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Abstract   
 

This research handles detecting, classifying and locating of faults on high voltage direct 

current (HVDC) transmission line (TL) using backpropagation feedforward artificial 

neural network (ANN). 

An overhead bipolar HVDC TL model of 940-km long and ±500-kV is chosen to be 

studied. The HVDC TL post-fault measurements of ac and dc voltages and currents at 

the rectifier and inverter stations related to pre-fault measurements are used as inputs to 

the neural networks. In this research, most frequent kinds of bipolar HVDC TL power 

faults that may occur can be precisely detected and classified while the location of these 

faults can be determined with an acceptable percentage of error.       

Analysis of neural networks with varying number of hidden layers and neurons per 

hidden layer has been provided to validate the choice of the neural networks in each 

step. Simulation results have been provided to demonstrate that artificial neural network 

based methods are efficient in detecting, classifying and locating faults on HVDC 

transmission lines and achieve acceptable performances. 
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 ملخص الرســــالة

 

شثكاخ ًقل الكهشتاء عاليح الجهذ  في عاا ًىع وهكاى الأرشاف وذحذيذ هزا الثحس هى عثاسج عي دساسح لكيفيح اك

وهي احذي ذقٌياخ  ذقٌيح الشثكاخ العصثيح راخ الرغزيح الأهاهيح والاًرشاس الخلفيراخ الرياس الوسروش تاسرخذام 

 الزكاء الاصاٌاعي.

 099 ±كن وجهذ 049اس هسروش تاى  عاليح الجهذ شٌائيح الأقااب راخ ذيهىائيح ذن اخرياس شثكح ًقل كهشتاء وقذ 

وذن اسرخذام قين الجهىد والرياساخ الوسروشج والورشددج علً جاًثي هحااخ الرحىيل تعذ لثحس كٌوىرض ل كيلى فىلد

ذساسح جويع قيوها قثل حذوز العال كوذخلاخ للشثكاخ العصثيح الوسرخذهح لهقاسًح ت في الخط الٌاقل حذوز العال

هسافح وحذوشها علً الشثكح ليصثح تالإهكاى اكرشاف حذوشها هي عذهه وذحذيذ ًىع العال أًىاع الأعاا  الووكي 

 .تٌسثح خاأ هقثىلح هحاح الرحىيلوقىع العال عي 

ذن ذحليل كفاءج الكصيش هي الشثكاخ العصثيح الصٌاعيح عي طشيق ذغييش عذد الاثقاخ الوخفيح للشثكح وكزلك ذغييش 

شثكح ذحقق أعلً كفاءج هوكٌح في اكرشاف وذحذيذ أًىاع ل ذشكية فلللىصى  لأل حطثقعذد الخلايا العصثيح في كل 

 هحذدج. عاييش هقثىلح ووأهاكي الأعاا  ضوي ه
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1.1 Background 

An electric power system comprises of generation, transmission and distribution of 

electric energy. Transmission lines (TL) are used to transmit electric power to distant 

large load centers. The rapid growth of electric power systems over the past few 

decades has resulted in a large increase of the number of lines in operation and their 

total length. These lines are exposed to faults as a result of lightning, short circuits, 

faulty equipment, miss-operation, human errors, overload and aging.  Many electrical 

faults manifest in mechanical damages, which must be repaired before returning the line 

to service. The restoration can be expedited if the fault location is either known or can 

be estimated with a reasonable accuracy. Faults cause short to long term power outages 

for customers and may lead to significant losses especially for the manufacturing 

industry. Fast detecting, isolating, locating and repairing of these faults are critical in 

maintaining a reliable power system operation[1]. The subject of fault location has been 

of considerable interest to electric power utility engineers and researchers for many 

years. Most of the research done to date has been aimed at finding the locations of 

transmission-line faults. This is mainly because of the impact of transmission-line faults 

on the power systems and the time required to physically check the lines is much larger 

than the faults in the sub-transmission and distribution systems [2]. Fault location is a 

process aimed at locating the occurred fault with the highest possibly accuracy. A fault 

locator is mainly the supplementary protection equipment, which apply the fault-

location algorithms for estimating the distance to fault [2]. Transmission lines 

experience temporary and permanent faults. Temporary faults, which are the most 

dominant faults on overhead lines, are self-cleared. In consequence, the power-supply 

continuity is not permanently affected, which is advantageous. In turn, after the 

permanent fault occurrence, the related protective relaying equipment enables the 

associated circuit breakers to de-energize the faulted sections.  In the case of permanent 

faults, the restoration of power supply can be done after the maintenance crew finishes 

the repair of the damage caused by the fault. For this purpose, the fault position has to 

be known; otherwise the whole line has to be inspected to find the damaged place. Thus, 

it is important that the location of a fault is either known or can be estimated with 

reasonably high accuracy. This allows saving money and time for the inspection and 

repair, as well as to provide a better service due to the possibility of faster restoration of 

power supply. This also enables the blackouts to be avoided.   Temporary faults are self-

cleared and do not affect permanently the supply continuity, however, the location of 

such faults is also important. In this case the fault location can help to pinpoint the weak 

spots on the line. As a result, the plans of maintenance schedules can be fixed for 

avoiding further problems in the future [2].  

Transmission lines can carry either alternate current (AC) or direct current (DC), each 

has its properties and advantages. AC TL is the popular type where the distribution 

networks are AC and the consumed power at customers is also AC, so using AC TL 

reduce the costs of inverters and rectifiers which used to convert the current from the 

direct form to alternate form and vice versa. When the amount of power needed to 

transmit increases and the distance of transmission become longer the need of using DC 

TL appears. In some cases when two AC systems with different frequencies need to be 

interconnected the only method is using DC system as a connection between them.    

High voltage direct current (HVDC) technology has been considered as a viable 

alternative to AC for long-distance power transmission and interconnection of power 

systems. HVDC technology allows power transmission between AC networks with 

different frequencies or networks which may not be synchronized. Since there is no skin 
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effect on DC transmission line, inductive and capacitive parameters do not restrict the 

transmission capacity of HVDC systems. Besides, according to fast DC power 

modulation configured in a HVDC project‟s control system, the power oscillation in its 

related AC power grids can be restrained timely, and that is helpful to enhance the 

transient stability of power system [3].  

In a natural way a fault location can be done by foot patrols or by patrols equipped with 

different transportation means and binoculars. Such means of faulted-line inspection is 

considered as time consuming. Recent years have seen an increase in the number of 

algorithms designed to locate faults to improve protection in electrical power systems 

and to facilitate supervision and maintenance. Existing fault location methodology 

involves mainly the following methods: 

1. Technique based on fundamental-frequency currents and voltages, mainly on 

impedance measurement; 

2. Methods based on the travelling wave theory, these methods send an electrical pulse 

along the line and record the signals reflected at both ends. The return time of the 

pulse from the fault point indicates the distance to that point [1, 2].  

3. Methods based on assessing electrical magnitudes at fundamental frequencies: these 

methods record the voltage and/or current signals at the ends of the line under 

consideration and find its periodic fundamental component both before and 

immediately after the fault. When processed suitably, these fundamental components 

enable the fault to be located.  

4. knowledge-based approaches (Artificial Intelligence Methods (AI)).  

Artificial Intelligence is a subfield of computer science that investigates how the 

thought and action of human beings can be mimicked by machines [4]. Both the 

numeric, nonnumeric and symbolic computations are included in the area of AI.  

The mimicking of intelligence includes not only the ability to make rational decisions, 

but also to deal with missing data, adapt to existing situations and improve itself in the 

long time horizon based on the accumulated experience. 

Three major families of AI techniques are considered to be applied in modern power-

system automation and control: 

• Expert System Techniques (XPSs). 

• Artificial Neural Networks (ANNs). 

• Fuzzy-Logic Systems. 

At present, there is great scope for research in the field of neural networks in areas such 

as control systems, fault diagnosis, pattern classification, load forecasting in power 

systems and elsewhere. It has a capability of learning, generalization, fault tolerance and 

it is suitable for on line environment [5].  
 

1.1.1 Artificial Neural Networks 

An Artificial Neural Network (ANN) can be described as a set of elementary neurons 

that are usually connected in biologically inspired architectures and organized in several 

layers [6].  The structure of a feed-forward ANN is shown in Figure (1.1). There are Ni 

numbers of neurons in each Ith layer and the inputs to these neurons are connected to the 

previous layer neurons. The input layer is fed with the excitation signals. Simply put, an 
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elementary neuron is like a processor that produces an output by performing a simple 

non-linear operation on its inputs [7].  A weight is attached to each and every neuron 

and training an ANN is the process of adjusting different weights tailored to the training 

set. An Artificial Neural Network learns to produce a response based on the inputs 

given by adjusting the node weights. Hence we need a set of data referred to as the 

training data set, which is used to train the neural network. 

There are many techniques and algorithms used to determine the weights of layered 

ANN, the most common techniques are [8]: 

1. Back-propagation Algorithm. 

2. Radial Basis Function. 

3. Support Vector Machines. 

4. Committee Machines. 

In this work we will focus on Back-propagation Algorithm to solve the model of HVDC 

Transmission Line. Back-propagation was created by generalizing the Widrow-Hoff 

learning rule to multiple-layer networks and nonlinear differentiable transfer functions. 

Input vectors and the corresponding target vectors are used to train a network until it 

can approximate a function, associate input vectors with specific output vectors, or 

classify input vectors in an appropriate way. Standard back-propagation is a gradient 

descent algorithm, as is the Widrow-Hoff learning rule, in which the network weights 

are moved along the negative of the gradient of the performance function [9].  

 

1.2 Motivation 

The prime motive behind this thesis was the significant impact of a very accurate fault 

locator could make if employed in a HVDC power transmission system, in terms of the 

amount of money and time that can be saved where the most HVDC TL are used to 

transmit power over a very long distances. The main goal of Fault Location is to locate 

a fault in the power system with the highest achievable accuracy.  

One of the important aspects, that this thesis concentrates on, is the analysis of the 

transmission line‟s voltages and currents at inverter and rectifier sides of HVDC 

transmission system with the voltages and currents at the alternate current (AC) sides 

 Figure (1.1): A basic three-layer architecture of a feed-forward ANN [6]  
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during various fault conditions and how they can be effectively utilized in the design of 

an efficient fault locator. This thesis drew its initial motivation from [10], which 

demonstrates a method that could be used for location of faults in AC transmission 

lines. However, when extensively studied, it can be noted that a fault locator with 

acceptable accuracy can be easily achieved with the help of artificial neural networks by 

using large amount of data set for training and the learning process. This data simulated 

many times in different fault locations and the results used to approximate the results of 

unknown fault locations and for different types of faults. 

 

1.3 Literature review 

Due to the simplicity and the existence of a well-defined learning of feed-forward 

multilayer perceptron technique, most of the previous works have to study it. For 

example, Kulicke and Dalstein used neural networks for the detection of faults on 

transmission lines [9], a new technique for the detection and location of high speed 

faults using neural networks had been proposed by Rikalo, Sobajic and Kezunovic [11]. 

Neural network based single ended fault location techniques have been widely 

researched by Chen and Maun [12] while Song used neural networks for fault location 

on series compensated lines [13].  

Because of the few numbers of HVDC Transmission lines over the world in comparison 

with AC TL, the topic of Power Fault Detection on HVDC TL have a small number of 

researches and most of them focus on classifying HVDC faults using wavelet 

techniques.  

In 1992, the using of NN to identify faults of AC-DC system with back to back 

HVDC construction was studied [14]. That paper focused on identifying faults of 

HVAC TL with probability of fault in back to back HVDC section. Therefore, 

there's no long HVDC TL to study. The researchers found a way to detect and 

classify faults but they don't care in the dc faults and they only point to it with (dc 

fault) without classifying. 

In 1993, using NN in HVDC system faults diagnosis was studied [15]. A 20-12-4 

NN structure was used to classify 16 different fault types for a six-pulse HVDC 

system. Using twenty different inputs; voltage across and current through each 

thyristor (9-inputs), DC voltage and current at the rectifier end (2-input), three 

phase voltages and currents through the transformer (6-inputs), three inputs to 

represent the conduction pattern of the thyristors over one period. This paper 

focuses on detecting and classifying faults in AC-DC section with faults in the 

converter. Don't determine the fault location and not specialized on the HVDC TL. 

In 1998, radial basis function NN was used for fault diagnosis in a HVDC system. 

The researchers here used eight different inputs and classify five types of faults 

(four of them to classify AC faults). The researchers decrease inputs by using 

ground current instead of three currents of AC system [16]. As mentioned in 

previous papers the researchers didn't care in HVDC TL section they only referred 

to the faults in HVDC by (DC fault) without classifying. 

In 2000, A new method to reduce the needed training data at the cost of time delay 

by using expert systems with NN to classify –only- HVDC faults. They use the 

same way that was used in 1998 to reduce inputs by using ground current. Expert 

knowledge was used to reduce training data. In this paper, inputs took as patterns 

with window length covers both pre/post fault regions [17]. 
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In 2001, researchers used wavelet modulus maxima technique in analysis and 

identification of HVDC system [18]. A12-pulse unipolar HVDC system model was 

simulated with this technique to classify three types of faults; DC line short circuit 

fault, commutation failure at the inverter station, single-phase short circuit fault at 

AC side of inverter. This paper does not interest in HVDC TL nor the fault position 

determination. 

In 2010, researchers introduced a new method in determining HVDC TL fault 

location [19]. This method depends on using both mathematical equations and 

wavelet technique to determine the fault location in bipolar HVDC TL. Maximum 

of 0.55% error in one pole to ground fault, 0.78% error in bipole to ground fault 

and maximum of 0.75% error in pole to pole fault - in related to the overall length 

of 1000 km HVDC TL-. The good results are in cost of time because the introduced 

function needed to be calculates each km of TL and the equation itself takes a long 

time to be calculated.  

June 2011, Fault location in extra-long HVDC TL using continuous wavelet 

transformation method was studied on 6-pulse HVDC system [20]. This method 

suffers in two main problems; it works at off-line environment and needs to special 

instruments to calculate the fault position. According to the paper it's possible to 

achieve fault location prediction error of ±400m for the test system with 2400 km 

overhead HVDC TL. 

November 2011, reverse travelling wave was used with a new mathematical 

analysis and equations to locate faults in a HVDC TL [10]. Sampling frequency of 

80 KHz and signal processing methods were used to get accuracy of 98.56%. The 

need for special equipment and working in off-line environment are the main 

problems in this method. 

In 2012, the wavelet based multi-resolution analysis was used to classify both AC 

and DC faults [21]. Researchers here tried to find a new method to classify HVDC 

faults by studying the percentage variation of phase voltages and currents in each 

fault case. 

In 2014, IEEE researchers used ANN for fault classification on HVDC systems and 

succeeded to diagnose HVDC faults. Here NN output can predict the change in the 

firing angle required for the HVDC rectifier unit and each value of the firing angle 

refers to special type of fault [22]. 

 

1.4 Contribution 

The contribution of this thesis can be concluded in the following points:  

1. The focus of this work is on the faults on the HVDC TL link and not on the AC 

grid of the power system nor on the rectifier or the inverter stations while most 

previous researches have studied the HVDC TL as a part of a complete HVDC 

system. 
 

2. In addition to detection and classification tasks, this thesis discusses the 

determination of fault location using NN technology. Most of the previous 

related works focus only on classifying and detecting of faults. 
  
 

3. Using NN in HVDC gives the ability to get results in the on-line environment 

contrary to using travelling wave method where you must work in off-line 
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environment. Therefore, using NN to diagnose HVDC faults can detect the 

instantaneous and permanent faults where using any other method in off-line 

environments detects only permanent faults. 
 

   

4. Using neural networks need no additional equipment where any HVDC system 

must have monitoring equipment for voltages and currents at converter stations. 

 

1.5 Outline of the Thesis 

The second chapter will describe HVDC system, system component, and types of the 

faults that can face HVDC TL will be studied briefly. Chapter three studies the used 

techniques to detect and locate faults at power transmission lines, four methods will be 

studied; Impedance Based method, Travelling wave, high frequency and Artificial 

Intelligent methods. Chapter four deals with one method of artificial intelligent methods 

that uses to detect, classify and locate HVDC faults. This method is the Artificial Neural 

Network (ANN), which will be studied in details where it is the thesis used method.   

Chapter five presents HVDC system model, series of simulation results that have been 

obtained using MATLAB, SimPowerSystems, and the Artificial Neural Networks 

Toolboxes in Simulink to emphasize the efficiency and accuracy factors of the proposed 

fault locator. Several neural networks with varying configurations have been trained, 

tested and their performances have been analyzed in this chapter.   Finally, chapter six 

concludes the entire research and the work that's looked forward in future to be done. 
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Electrical power is generated as an alternating current (AC). It is also transmitted and 

distributed as AC and apart from certain traction and industrial drives and processes, it 

is consumed as AC. In many circumstances, however, it is economically and technically 

advantageous to introduce direct current (DC) links into the electrical supply system. In 

particular situations, it may be the only feasible method of power transmission. DC 

transmission is used when two AC systems cannot be synchronized or when the 

distance by land or cable is too long for stable and/or economic AC transmission. At 

one “converter station” the AC is converted to DC, which is then transmitted to a 

second converter station, converted back to AC, and fed into another electrical network 

[23]. 

In this Chapter, an overview of HVDC system, history and uses will be described in 

section 2.1. Section 2.2 discusses HVDC converting technologies like voltage source 

converter (VSC) and line commutated current (LCC) technology. Section 2.3 describes 

LCC converter theory where it is the thesis used technology.  HVDC system connection 

types and differences between each other are studied in section 2.4. HVDC converter 

station components discussed in section 2.5 and finally, HVDC TL fault types are 

discussed in section 2.6. 

 

2.1 Introduction 
The transmission and distribution of electrical energy started with direct current in 

1882, a 50-km-long 2-kV DC transmission line was built between Miesbach and 

Munich in Germany. At that time, conversion between reasonable consumer voltages 

and higher DC transmission voltages could only be realized by means of rotating DC 

machines. In an AC system, voltage conversion is simple. An AC transformer allows 

high power levels and high insulation levels within one unit, and has low losses. It is a 

relatively simple device, which requires little maintenance. Further, a three-phase 

synchronous generator is superior to a DC generator in every respect. For these reasons, 

AC technology was introduced at a very early stage in the development of electrical 

power systems. It was soon accepted as the only feasible technology for generation, 

transmission and distribution of electrical energy [24].  

However, high-voltage AC transmission links have disadvantages, which may compel a 

change to DC technology, HVDC is preferred to use in four broad categories and any 

scheme usually involves a combination of two or more of these. The categories are [23]: 

1. Transmission of bulk power where AC would be uneconomical, impracticable or 

subject to environmental restrictions. 

2. Interconnection between systems, which operate at different frequencies, or between 

non-synchronized or isolated systems, which, although they have the same nominal 

frequency, cannot be operated reliably in synchronism. 

3. Addition of power in-feed without significantly increasing the short circuit level of 

the receiving AC system. 

4. Improvement of AC system performance by the fast and accurate control of HVDC 

power.  

For a given transmission task, feasibility studies are carried out before the final decision 

on implementation of an HVAC or HVDC system can be taken. 
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Figure (2.2): Typical transmission line structures for 1000 MW [24] 

Figure (2.1): Total Cost Vs. Distance for HVAC & HVDC [24]  

Figure (2.1) shows a typical cost comparison curve between AC and DC transmission 

considering: 

■ AC vs. DC station terminal costs 

■ AC vs. DC line costs 

■ AC vs. DC capitalized value of losses 

 

 

The DC curve is not as steep as the AC curve because of considerably lower line costs 

per kilometer. For long AC lines the cost of intermediate reactive power compensation 

has to be taken into account. The break-even distance is in the range of 500 to 800 km 

depending on a number of other factors, like country-specific cost elements, interest 

rates for project financing, loss evaluation, cost of right of way, etc. 

The land coverage and the associated right-of-way cost for a HVDC overhead 

transmission line is not as high as that of an AC line. This reduces the visual impact and 

saves land compensation for new projects. It is also possible to increase the power 

transmission capacity for existing rights of way. A comparison between a DC and an 

AC overhead line is shown in Figure (2.2) [24].  
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Figure (2.3): Conventional HVDC with current source converter [25] 

Figure (2.4): HVDC with voltage source converters [25] 

2.2 HVDC Converter Technologies 

Two basic converter technologies are used in modern HVDC transmission systems. 

These are conventional line-commutated current source converters (CSCs) or (LCC) 

and self-commutated voltage source converters (VSCs). Figure (2.3) shows a 

conventional HVDC converter station with CSCs while Figure (2.4) shows a HVDC 

converter station with VSCs [25].  
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2.2.1 Line Commutated Current Source Converter 

Conventional HVDC transmission employs line-commutated CSCs with thyristor 

valves. Such converters require a synchronous voltage source in order to operate. The 

basic building block used for HVDC conversion is three phase, full-wave bridge 

referred to as a six-pulse or Graetz bridge. The term six-pulse is due to six 

commutations or switching operations per period resulting in a characteristic harmonic 

ripple of six times the fundamental frequency in the dc output voltage. Each six-pulse 

bridge is comprised of six controlled switching elements or thyristor valves. Each valve 

is comprised of a suitable number of series-connected thyristors to achieve the desired 

dc voltage rating. The dc terminals of two six-pulse bridges with ac voltage sources 

phase displaced by 30◦ can be connected in series to increase the dc voltage and 

eliminate some of the characteristic ac current and dc voltage harmonics. Operation in 

this manner is referred to as 12-pulse operation. In 12-pulse operation, the characteristic 

ac current and dc voltage harmonics have frequencies of 12n+1 and 12n, respectively. 

The 30◦ phase displacement is achieved by feeding one bridge through a transformer 

with a wye-connected secondary and the other bridge through a transformer with a 

delta-connected secondary. Most modern HVDC transmission schemes utilize 12-pulse 

converters to reduce the harmonic filtering requirements required for six-pulse 

operation; e.g., fifth and seventh on the ac side and sixth on the dc side. This is because, 

although these harmonic currents still flow through the valves and the transformer 

windings, they are 180◦ out of phase and cancel out on the primary side of the converter 

transformer. Figure (2.5) shows the thyristor valve arrangement for a 12-pulse converter 

with three quadruple valves, one for each phase. Each thyristor valve is built up with 

series-connected thyristor modules [25].  

 

 

 

 

Figure (2.5): Thyristor valve arrangement for a 12-pulse converter with three quadruple valves, one 

for each phase [25] 
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Figure (2.6): HVDC IGBT valve converter arrangement [25] 

2.2.2 Self Commutated Voltage Source Converter 

HVDC transmission using VSCs with pulse-width modulation (PWM), commercially 

known as HVDC Light, was introduced in the late 1990s. Since then the progression to 

higher voltage and power ratings for these converters has roughly paralleled that for 

thyristor valve converters in the 1970s. These VSC-based systems are self-commutated 

with insulated-gate bipolar transistor (IGBT) valves and solid-dielectric extruded 

HVDC cables. VSC technology can rapidly control both active and reactive power 

independently of one another. Reactive power can also be controlled at each terminal 

independent of the dc transmission voltage level. This control capability gives total 

flexibility to place converters anywhere in the AC network since there is no restrictions 

on minimum network short-circuit capacity. Self-commutation with VSC even permits 

black start; i.e., the converter can be used to synthesize a balanced set of three phase 

voltages like a virtual synchronous generator. The dynamic support of the ac voltage at 

each converter terminal improves the voltage stability and can increase the transfer 

capability of the sending- and receiving-end ac systems, thereby leveraging the transfer 

capability of the dc link.  Figure (2.6) shows the IGBT converter valve arrangement for 

a VSC station. Unlike conventional HVDC transmission, the converters themselves 

have no reactive power demand and can actually control their reactive power to regulate 

ac system voltage just like a generator [25].  
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Figure (2.8): Effect of Commutation on 

Converter Operation [23] 

2.3 LCC Converter Theory 

Six-pulse converters are the building block of HVDC systems. An example of a six-

pulse converter, which employs diodes, is shown in Figure (2.7). Diodes conduct in the 

sequence 1,2,3,4,5,6, so the transitions between one diode and the next occur alternately 

in the upper and lower half-bridges. Each diode conducts for 120°, in every 360° cycle, 

so that the successive conducting pairs of diodes are 1 and 2, 2 and 3, 3 and 4, 4 and 5, 5 

and 6, and 6 and 1. The conducting pair is always that pair of diodes which have the 

largest instantaneous AC voltage between them. The other diode pairs are connected to 

an instantaneously smaller voltage and hence are subjected to a reverse voltage across 

their terminals. As time passes, the relative amplitudes of the converter‟s three AC 

supply phases (valve-winding voltages) change, so in Figure (2.7) the voltage B-C 

becomes greater than the voltage A-C and valve 3 takes over the current which had been 

flowing in valve 1. This process is known as “commutation”.  In practice, the transfer of 

current from one diode to the next requires a finite time, since the current transfer is 

slowed down by the commutation reactance (made up of reactance in the converter 

transformer, the thyristor valve and a small amount in the HF filtering circuit). This 

produces an "overlap” between successive periods of conduction in one half of the six-

pulse bridge. The time taken to commutate the current from one valve to the next is 

called the “overlap angle”, μ and can be seen clearly in Figure (2.8) [24]. 

In a thyristor converter, shown in Figure (2.7), it is possible to vary the mean direct 

voltage by controlling the instant at which the thyristors are turned on. A thyristor is 

turned on (fired) by applying a short pulse to its gate terminal and turns off when the 

external circuit forces its anode current to zero. In this case, current zero is brought 

about by the commutation process when the next thyristor is fired. The firing delay 

angle α is defined as the angle between the phase voltage crossing of the valve-winding 

voltage and the instant when the thyristor is fired. This is illustrated in Figures (2.9), 

(2.10) and (2.11). This delay angle determines when the commutation process will 

commence and consequently determines the mean direct voltage (Vd). Vd is proportional 

to the cosine of α; i.e. the greater the delay angle, the smaller the mean direct voltage. 

Zero voltage is reached as α approach 90°[23]. 

 

 

Figure (2.7): Six-Pulse Converter and  Current 

Switching Pattern [24] 
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Figure (2.9): Effect of Firing Angle on Converter Operation [23] 

Figure (2.11): Effect of a Firing Angle of 140° [23] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (2.10): Effect of Firing Angle as it Approaches 90° [23] 
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Figure (2.12): Monopolar HVDC System with Ground Return [23] 

By increasing the firing angle, α, beyond 90°, the voltage area of the phase-to-phase 

voltage connected to the DC terminals via the conducting thyristors will be 

predominantly negative; hence the DC terminal voltage will be negative. As, beyond 

90°, the firing angle of the converter becomes large, it is more common to refer to the 

“extinction angle” or “gamma”, γ. This extinction angle represents the time between the 

end of the overlap period and the time when the phase voltage associated with the 

outgoing valve becomes more positive/negative than that of the next valve in sequence, 

and it is mathematically expressed as: 

γ = 180° - μ - α 

It must be noted that the control of the output voltage of a six-pulse bridge is only 

achieved by the firing angle, α. The extinction angle, γ, is a measure of the available 

turn-off time for the valve following the point in time where the valve is fired [23].  
 

2.4 HVDC System Configurations 
HVDC system can be arranged by many different schemes depend on needed capacity 

and costs. These schemes can be divided as follow: 

 

2.4.1 Monopolar HVDC System 
 

Monopolar HVDC systems have either ground return or metallic return: 
 

2.4.1.1 A Monopolar HVDC System with Ground Return  

The ground return consists of one or more six-pulse converter units in series or parallel 

at each end, a single conductor and return through the earth or sea, as shown in Figure 

(2.12). It can be a cost-effective solution for a HVDC cable transmission and/or the first 

stage of a bipolar scheme [26]. At each end of the line, it requires an electrode line and 

a ground or sea electrode built for continuous operation. 
 

 

 

 

2.4.1.2 A Monopolar HVDC System with Metallic Return  

Usually consists of one high voltage and one medium voltage conductor as shown in 

Figure (2.13).  A monopolar configuration is used either as the first stage of a bipolar 

scheme, avoiding ground currents, or when construction of electrode lines and ground 

electrodes results in an uneconomical solution due to a short distance or high value of 

earth resistivity [23].  
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Figure (2.13): Monopolar HVDC System with Metallic Return [23] 

Figure (2.14): Bipolar HVDC System [23] 

 

 
 

2.4.2 Bipolar HVDC System 

A Bipolar HVDC System consists of two poles, each of which includes one or more 

twelve-pulse converter units, in series or parallel. There are two conductors, one with 

positive and the other with negative polarity to ground for power flow in one direction.   

For power flow in the other direction, the two conductors reverse their polarities. A 

Bipole system is a combination of two monopolar schemes with ground return, as 

shown in Figure (2.14) [27]. 
 

 

 

 

With both poles in operation, the imbalance current flow in the ground path can be held 

to a very low value. This is a very common arrangement with the following operational 

capabilities: 

■ During an outage of one pole, the other could be operated continuously with ground 

return. 

■ For a pole outage, in case long-term ground current flow is undesirable, the bipolar 

system could be operated in monopolar metallic return mode, if appropriate DC 

arrangements are provided, as shown in Figure (2.15). 
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Figure (2.15): Bipolar HVDC System with Monopolar Metallic Return for Pole Outage [23] 

Figure (2.16): Tripole HVDC System [28] 

 

 
 

■  During maintenance of ground electrodes or electrode lines, operation is possible 

with connection of neutrals to the grounding grid of the terminals, with the imbalance 

current between the two poles held to a very low value. 

■  When one pole cannot be operated with full load current; the two poles of the bipolar 

scheme could be operated with different currents, as long as both ground electrodes are 

connected. 

■ In case of partial damage to DC line insulation, one or both poles could be 

continuously operated at reduced voltage [23]. 
  

2.4.3 Tripole HVDC System  

It‟s new idea of transmission DC (since 2004). This structure based on a bipole and 

monopole systems fed from the same bus and supplying a common receiving-end bus. 

Monopole earth return current is eliminated by two modifications , The monopole is 

equipped with an additional bridge connected in anti-parallel to the first and all 

thyristors and their heat sinks are rated higher than normal.  Transformers and other 

station equipment are standard, both in design and rating [28]. Figure (2.16) shows the 

arrangement of tripole HVDC system.  
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Figure (2.17): Back-To-Back HVDC System [23] 

Figure (2.18): 500MW Back-To-Back HVDC System Converter Station [23] 

2.4.4 Back-To-Back HVDC System 

The expression Back-to-back indicates that the rectifier and inverter are located in the 

same station.  Back-to-back converters are mainly used for power transmission between 

adjacent AC grids, which cannot be synchronized. They can also be used within a 

meshed grid in order to achieve a defined power flow [24]. Here there is no DC 

transmission line and both converters are located at the same site. For economic reasons 

each converter is usually a twelve-pulse converter unit and the valves for both 

converters may be located in one valve hall. The control system, cooling equipment and 

auxiliary system may be integrated into configurations common to the two converters. 

DC filters are not required, nor are electrodes or electrode lines, the neutral connection 

being made within the valve hall. Figure (2.17) shows two different circuit 

configurations used for back-to-back HVDC links and Figure (2.18) shows 500 MW 

Back-To-Back HVDC system converter station. 
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Figure (2.19): Valve module, MVU and the representation of each in single diagram [25] 

2.5 HVDC Station Components 

Any HVDC system must contain three major components; rectifier, inverter and the 

transmission line. In rectifier, AC current converted to DC form and then transmitted 

through the transmission line to the inverter to convert current again to AC form. Main 

components which needed to complete this process in converter station can be 

concluded as follows:  

2.5.1 Thyristor Valves 

The thyristor valves make the conversion from AC into DC and thus are the central 

component of any HVDC converter station. Thyristors are used as switches and thus the 

valve becomes controllable. The thyristors are made of highly pure mono-crystalline 

silicon. The high speed of innovation in power electronics technology is directly 

reflected in the development of the thyristor [24].  

Thyristors which used for HVDC valves are amongst the largest semiconductors of any 

type produced for any industry. Such components are expensive and there may be many 

thousands of them in a HVDC station. Moreover, they are quite delicate and require a 

great many additional components to control and protect them. In fact, although it is the 

most obvious component of a thyristor valve, the thyristors account for a surprisingly 

low percentage of the total valve cost. 

HVDC valves are almost never installed as individual units. Nearly always, several 

valves are combined together into a “Multiple Valve Unit”, or MVU. The MVU may 

either be mounted directly on the floor or, more commonly today, suspended from the 

ceiling. For economy of insulation, the valve design is often arranged so that the lower-

voltage valves (usually those associated with the Delta connected six-pulse bridge) are 

used as part of the insulation on which the higher-voltage valves (usually those 

associated with the star-connected bridge) are mounted. Hence the low voltage end is 

the end at which the valve is attached to the floor or ceiling [23]. Figure (2.19) shows 

valve module and multiple valve units with the representation of MVU in single 

diagram. 
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Figure (2.21): Typical Converter transformer 

arrangements [23] 

2.5.2 Converter Transformer 

The converter transformers transform the voltage of the AC bus-bar to the required 

entry voltage of the converter. The 12-pulse converter requires two 3-phase systems 

which are spaced apart from each other by 30 or 150 electrical degrees; Figure (2.20) 

shows a typical converter transformer [24]. The converter transformer acts as the 

interface between the HVDC converter and the AC system and provides several 

functions including: 

■ Providing galvanic isolation between the AC and DC systems. 

■ Providing the correct voltage to the converters. 

■ Limiting effects of steady state AC voltage change on converter operating conditions 

(tapchanger). 

■ Providing fault-limiting impedance. 

■ Providing the 30° phase shift required for twelve-pulse operation via star and delta 

windings. 

Figure (2.21) illustrates the commonly recognized transformer arrangements in HVDC 

schemes. Lowest cost can normally be achieved by minimizing the number of elements 

the converter transformer is broken down into, hence the lowest cost is typically a 3-

phase, 3-winding transformer. However, due to shipping limits, such a transformer may 

not be practical so another arrangement should be considered. Where a spare converter 

transformer is deemed necessary, based on an availability analysis of the scheme, then it 

is more cost-effective to use a 1-phase, 3-winding transformer arrangement, as one 

spare unit can replace any of the in-service units, whilst 2-winding arrangements require 

two spare units to be supplied.  

An important consideration in the design of a converter transformer is the selection of 

the leakage reactance as this will constitute the major part of the converter‟s 

commutating reactance. The leakage reactance must primarily ensure that the maximum 

fault current that the thyristor valve can withstand is not exceeded. Typically the 

optimum leakage reactance will be in the range 0.12 pu to 0.22 pu [24]. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure (2.20): A HVDC Converter transformer [24]  
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Figure (2.22): Air-insulated dc smoothing reactor, Inductance: 150 

mH, Rated voltage: 500 kV DC, Rated current: 1800 A DC [24] 

2.5.3 Smoothing Reactor 

For a HVDC transmission scheme, the DC smoothing reactor provides a number of 

functions but principally is used to: 

■ Reduce the DC current ripple on the overhead transmission line or cable. 

■ Reduce the maximum potential fault current that could flow from the DC 

transmission circuit into a converter fault. 

■ Modify the DC side resonances of the scheme to frequencies that are not multiples of 

the fundamental AC frequency. 

■ Protect the thyristor valve from fast front transients originating on the DC 

transmission line (for example a lightning strike). 
 

The DC smoothing reactor is normally a large air-cored air-insulated reactor and is 

principally located at the high voltage terminal of the HVDC converter for schemes 

rated at, or below, 500 kVdc. Above 500 kV, the DC smoothing reactor is commonly 

split between the high voltage and neutral terminals [24].  

While the current and voltage rating of the smoothing reactor can be specified based on 

the data of the DC circuit, the inductance is the determining factor in sizing the reactor. 

Taking all design aspects above into account, the size of smoothing reactors is often 

selected in the range of 100 to 300 mH for long distance DC links and 30 to 80 mH for 

back-to-back stations. 

In an HVDC long-distance transmission system, it seems quite logical that the 

smoothing reactor will be connected in series with the DC line of the station pole. 

Figure (2.22) shows one kind of dc smoothing reactors. 
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2.5.4 Harmonic Filters 

There are two main reasons to use filters in HVDC system; reactive power and 

harmonics. The reactive power consumption of an HVDC converter depends on the 

active power, the transformer reactance and the control angle. It increases with 

increasing active power. A common requirement to a converter station is full 

compensation or overcompensation at rated load. In addition, a reactive band for the 

load and voltage range and the permitted voltage step during bank switching must be 

determined.  These factors will determine the size and number of filter and shunt 

capacitor banks [24].  

Harmonics within a power system are defined as the modulation of the voltage or 

current at an integer multiple of the fundamental frequency.   Hence, for example, on a 

50 Hz system, the presence of 5th harmonic voltage means that there is an additional 

250 Hz component added to the voltage waveform which will distort the voltage 

waveform as shown in Figure (2.23).    

 

The presence of harmonics in the power system can result in some undesirable effects 

on connected power system equipment, for example, the presence of harmonics can 

result in: 

■ Overheating of capacitor banks. 

■ Overheating of generators. 

■ Instability of power electronic devices. 

■ Interference with communication systems. 

The AC/DC converter is a source of harmonics. This is because the converter only 

connects the supply to the load for a controlled period of a fundamental frequency cycle 

and hence the current drawn from the supply is not sinusoidal. Seen from the AC side, a 

converter can be considered as a generator of current harmonics and from the DC side a 

generator of voltage harmonics.  The actual level of harmonics generated by an AC/DC 

Figure (2.23): Three-Phase fundamental frequency sine-wave before and after the effect of 5
th

 harmonic [23] 
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Figure (2.24): A typical twelve-pulse converter bridge [23] 

converter is a function of the duration over which a particular phase is required to 

provide unidirectional current to the load. Hence, the higher the “pulse number” of the 

converter, which means the more switching between phases within a cycle, the lower 

the harmonic distortion in both the AC line current and the DC terminal voltage [23]. 
 

2.5.4.1 AC Harmonic Filters 

The main components of a typical HVDC converter terminal are shown in Figure 

(2.24). If a Fourier analysis is performed on the idealized waveforms, the following 

results are obtained: 

1) For Y/Y connection the generated current can be represented by equation (2.1) : 
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2) For Y/ connection the generated current can be represented by equation (2.2): 
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It can be seen from above equations that each six-pulse bridge generates harmonic 

orders 6n±1, n = 1, 2, 3 ..., there are no tripled harmonics (3rd, 6th, 9th...) present and 

that for n = 1, 3, etc., the harmonics are phase shifted by 180°.  

 

By combining two six-pulse bridges with a 30° phase shift between them, i.e. by using 

Y/Y and Y/Δ transformers as shown in Figure (2.24) and summating above equations ,a 

twelve-pulse bridge is obtained and the current of overall connection will be as 

represented in equation (2.3):  
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Thus, in a twelve-pulse bridge, the harmonic orders 6n ± 1, n = 1, 3, 5 ...  are effectively 

cancelled in the common supply leaving only the characteristic twelve-pulse harmonics:  

i.e. 12n ± 1, n = 1, 2, 3... 
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Figure (2.25): HVDC converter station and location of filters [29] 

2.5.4.2 DC Harmonic Filters 

Harmonic voltages, which occur on the DC, side of a converter station cause AC 

currents which are superimposed on the direct current in the transmission line. These 

alternating currents of higher frequencies can create interference in neighboring 

telephone systems despite limitation by smoothing reactors.  DC filter circuits, which 

are connected in parallel to the station poles, are an effective tool for combating these 

problems. The configuration of the DC filters very strongly resembles the filters on the 

AC side of the HVDC station. There are several types of filter design. Single and 

multiple-tuned filters with or without the high-pass feature are common.  One or several 

types of DC filter can be utilized in a converter station. Figure (2.25) shows the place of 

DC filters in the converter station.  For 12-pulse converter generates characteristic 

harmonics with order of Kn 12  and K=1, 2, 3…  Figure (2.26) shows DC harmonic 

filters [24]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure (2.26): DC harmonic filter capacitors [29] 
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Figure (2.27): Single Tuned Band Pass filter construction , design equations and response [29] 

2.5.4.3 Quality Factor 
The Quality factor is a measurement of the sharpness of a filter; High Q-value filter is 

sensitive with the frequency variation (detuning) according to equation (2.4): [29] 

R

L
Q o        (2.4)     

2.5.4.4 HVDC Filter Types 

Four different types of filters are used in HVDC stations: 

1. Single Tuned Band Pass Filter 

Has a Very low impedance in resonance frequency with efficient filtering in a narrow 

frequency band, normally used for the largest harmonics like 11
th

 and 13
th

.   Figure 

(2.27) shows the filter construction, response and design equations [29].  

 

 
 

2. High Pass Filter 

Broadband filter used to take care of all harmonics from the 23rd and upwards, tuned to 

near the 24th harmonics with a Q-value normally lie within the range of 2-10. This type 

of filters can be designed with high Q-values for 11th and 13th with lower fundamental 

losses, but the parallel connected resistor is more expensive.  Figure (2.28) shows the 

filter construction, response and design equations [29].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (2.28): High Pass filter construction , design equations and response of 24
th

 harmonic [29] 
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Figure (2.29): Double tuned filter construction and response of 11/13
th

 harmonics [29] 

Figure (2.30): C-type filter construction, design equations and response [29] 

3. Double Tuned Filter 

This type of filters is commonly used in modern HVDC station where at high system 

voltage the larger main capacitor is easier to optimize at lower cost/kvar. Each switched 

filter attenuates two harmonics to reduce filter branch types and facilitate filter 

redundancy. Figure (2.29) shows the double tuned filter construction and response [29].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. C-Type Filter 

Used as Low-order high-pass filter for 3
rd

,5
th

 and 7
th

 harmonics. The lower L-C in filter 

construction  is series resonant at the fundamental frequency and so bypassed the 

resistor to greatly reduce the filter losses. Figure (2.30) shows a C-type filter 

construction, design equations and response [29].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.6 HVDC TL Fault Types 

Bipolar HVDC system is the type which we focus in this thesis. So, we interest in the 

faults that can occur in that system. 
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Figure (2.31): A single pole-to-ground fault on a bipolar system. 

Figure (2.32): A pole-to-pole fault on a bipolar system [30] 

2.6.1 Single Pole-to-Ground Fault 

A pole-to-ground fault occurs when one of the poles (positive or negative) is short 

circuited with the ground. When this occurs for a bipolar system, only the faulted pole is 

shut down, while the other pole continues conducting using the ground as a return. This 

allows the system to transfer half the power it was previously transferred.  If the system 

is a mono-polar instead of a bipolar system, the system is shut down and no power is 

transferred. Figure (2.31) shows this type of fault on a bipolar system [30]. 

  

 
 

2.6.2 Pole-to-Pole Fault 

This fault occurs only for a bipolar system and it occurs when the two poles are short 

circuited. A complete shutdown of the system is required when this happens. Figure 

(2.32) shows this type of fault [30]. 
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Figure (2.33): A pole-to-pole to ground fault on a bipolar system [30] 

2.6.3 Pole-to-Pole-to-Ground Fault 

This type of fault occurs when the two poles of a bipolar system are short circuited 

through the ground. A complete shutdown of the system is required for this type of 

fault. Figure (2.33) shows this type of fault [30]. 

 

 

 

 

2.6.4 Other Types of HVDC TL Faults 

Other types of HVDC faults can occur such as open circuit faults and flashover faults 

where Lighting strikes to a ground wire or tower cause this type of fault [30].  
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CHAPTER 3 

 

TECHNIQUES OF FAULT DETECTION AND LOCATION 

 ON TRANSMISSION LINE  
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Electric power systems, which are growing in size and complexity, will be always 

exposed to failures of their components. In the case of a failure, the faulty element 

should be disconnected from the rest of the sound system in order to minimize the 

damage of the faulty element and to remove the emergency situation for the entire 

system. This action should be taken fast and accurately and is accomplished by a set of 

automatic protective relaying devices. At the same time, when a fault occurs on a line, it 

is very important for the utility to identify the fault location as quickly as possible for 

improving the service reliability. If a fault location cannot be identified quickly and this 

produces prolonged line outage during a period of peak load, severe economic losses 

may occur and reliability of service may be questioned.  

All these circumstances have raised the great importance of fault-location research 

studies and thus the problem has attracted widespread attention among researchers in 

power-system technology in recent years. Basic algorithms used in fault locators are 

intended to make distance to fault calculation as accurate as possible. The fault locator 

is mainly associated with protection relays. Distance relays for transmission-line 

protection provide some indication of the general area where a fault occurred, but they 

are not designed to pinpoint the location. Moreover, both the tasks: line protection and 

fault location are fulfilled by processing the same current and voltage signals that are 

obtained from the instrument transformers and recorded at the substation. Fault-location 

estimation is a desirable feature in any protection scheme. Locating the fault on the 

transmission line accelerates line restoration and maintains system stability. That is why 

these two subjects are closely related to each other. There are, however, different 

demands formulated for protection and fault location [2].  

This chapter talks about methods and techniques used to detect and locate faults of TL.  

In section 3.1 HVDC TL fault types with both conventional and unconventional 

methods used in diagnosis faults in TL are discussed. Section 3.2 discusses the 

impedance based method , section 3.3 discusses travelling wave based method and high 

frequency methods are studied in section 3.4.  Finally, section 3.5 studies the artificial 

intelligence methods. 
 

3.1 Introduction 

Normally, a fault location can be done by foot patrols or by patrols equipped with 

different transportation means and binoculars. Such means of faulted-line inspection is 

considered as time consuming. Also, calls from witnesses of damages on the power line, 

or customer calls, can provide the required knowledge about the fault position. 

However, such primitive ways do not satisfy the requirements imposed on fault 

location. Valuable information on fault location can be obtained also from fault 

indicators, installed either in substations or on poles (or towers) along the transmission 

or distribution line.   Additional use of a radio link allows use of the information from 

indicators even during inclement weather. The other, unconventional fault-location 

system for monitoring transients of induced radiation from power system arcing faults, 

using both Very Low Frequency signals (VLF) and Very High Frequency signals 

(VHF) reception, has been tested in the experimental installation.  In spite of various 

attempts to different unconventional techniques, automatic fault location is still 

considered as the most widely used. It is based on determining the physical location of a 

fault by processing the voltage and current waveform values.  
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Automatic fault location can be classified into the following main categories:[2] 

1. Technique based on fundamental-frequency currents and voltages; mainly on 

impedance measurement. 

2. Technique based on traveling-wave phenomenon. 

3. Technique based on high-frequency components of currents and voltages generated 

by faults. 

4. Knowledge-based approaches. 
 

These techniques will be discussed briefly in next sections. 

 

3.2 Impedance Based Method 

Making use of the fundamental-frequency voltages and currents at the line terminal (or 

terminals), together with the line parameters, appears as the simplest way for 

determining the fault location.  It is mainly considered that the calculated impedance of 

the faulted-line segment is a measure of the distance to fault. The methods belonging to 

this category are simple and economical for implementing. Depending on the utilized 

input signals of the fault locator, these methods  as applied to the two terminal lines, can 

be further classified. Performing such classification one has to take into account an 

availability of measurements: whether from one or both ends, and also whether 

complete measurements (voltage and current) or incomplete measurements (voltage or 

current) from a particular line end are utilized. Various fault-location methods, with 

acceptable accuracy for most of the practical applications, have been developed using 

one-end impedance techniques. A major advantage for these techniques is that 

communication means are not needed and simple implementation into digital protective 

relays or digital fault recorders is possible.   However, the fault-location algorithms will 

be more accurate, if more information about the system is available. Therefore, if 

communication channels are at the disposal, then the two-terminal fault-location 

methods may be used. Only low-speed communications are necessary for this 

application.  If necessary, the data could be retrieved manually for estimation of the 

fault location. The two-end technique offers improved fault-location determination, 

without any assumptions and information regarding the external networks such as 

impedances of the equivalent sources [2].  

For the implementation of the one-ended fault location methods, the following data are 

necessary: [31]  

1. Phase-to-ground voltages and phase currents.  

2. Identifying the fault type.  

3. Pre-fault data are required for some methods.  

This method uses the following equipment to obtain and process data [31]: 

1.A microprocessor-based relay or other three-phase voltages and currents measurement 

device that could calculate fault location estimates.  

2.Communication medium or SCADA interface for remote calculation of fault location 

estimates.  

In order to determine an accurate fault location equation, the circuit in Figure (3.1) is 

examined.   
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Figure (3.1) One-line diagram and equivalent circuit for a three-phase fault on a 

transmission line with two sources, G and H [31] 

Fault on a homogenous transmission line with fault resistance RF and a line impedance 

ZL between terminals G and H. The remote and local terminals are represented by their 

Thevenin equivalents.    

 

 

 

From Figure (3.1) it can be easily seen that the voltage drop from terminal G due to the 

fault occurring at location m per unit can be calculated by equation (3.1): 

FFGLG IRImZV     (3.1) 
 

Where: 

VG is the voltage at terminal G. 

m is the per unit distance to the fault. 

ZL is the line impedance between terminals G and H. 

IG is the line current from terminal G. 

RF is the fault resistance. 

IF is the total fault current.  

 

The impedance measured from terminal G can be found by dividing equation (3.1) by IG  

to be represented by equation (3.2): 
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Where ZFG is the apparent impedance measured from G to the fault. The fault 

impedance will have a reactive component if the ratio
G

F

I

I
 is complex. This reactive 
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component can be inductive or capacitive depending on the angle of the ratio. The 

reactive component will be zero when the angle is zero [30].  

Now, In order to analyze the parameters affecting the error, the parameters affecting the 

angle of 
G

F

I

I
 must be considered. To do that, the pre-fault system must be studied . Let 

the following equation (3.3)  be defined. 

LGG III      (3.3) 

Where:  

GI is the difference current.  

IL is the pre-fault load current.  

The equation (3.2)  can be written as equation (3.4): 
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Where: 

ds is the current distribution factor in equation (3.5)  

ns is the circuit loading factor in equation (3.6). 
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If the system is homogenous then β is zero. If there is load flow on the system then γ 

won‟t be zero.   If the magnitude of the fault current IG is much greater than the 

magnitude of the load current, IL, then, γ will approach zero. The sum of the angles β 

and γ, determines the reactive component caused by the fault resistance RF [31].  

In order to implement fault location algorithms, some simplifying assumptions have to 

be made in order to reduce the effect of RF. The performance of such an algorithm will 

depends on the underlying assumptions. The following section describes such an 

implementation of the algorithm [30]:  

3.2.1 Simple Reactance Method 

This method compensates for the fault resistance by taking only the imaginary part of 

the apparent impedance measurement. The fault locator uses the fact that the distance to 

the fault is proportional to the ratio of the measured reactance to the reactance of the 

entire line. The per-unit distance to the fault is represented by equation (3.7): 
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Equation (3.8) describes the line-to-ground fault location (a-g) as follows: 
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Where, 0K  and RI  are defined by equations (3.9) and (3.10)  respectively . 

LLL ZZZK 1100 3/)(        (3.9) 
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03II R       (3.10) 

RI : Residual current 

0I : Zero – sequence current 

LZ0 : Zero- sequence line impedance 

LZ1 : Positive sequence line impedance 

 

3.2.2 Method Without Using Source Impedances 

If the load current is eliminated by finding the change in current on the occurrence of a 

fault, the above method can be improved. Using the superposition current ΔIG, equation 

(3.1) can be written as (3.11): 
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Where; ds is the voltage drop across the fault resistance [33]. Multiplying equation (3.11) by 

the complex conjugate, ΔIG*, using only the imaginary part, we obtain equation (3.12) [31]:
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For a homogenous system, the angle is about zero for the current distribution factor         

(Im (1/ds)=0), and the fault location is represented by (3.13): 
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For a non-homogenous system, an angle correction (β) derived from the source impedance 

to account for the non-zero current distribution factor in this type of system [31], and the 

fault location defined by (3.14): 
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The fault location estimate is improved here by reducing the effect of the reactance error. 
 

3.2.3 Method Using Source Impedances 

Knowledge of the source impedance is required when the distribution factor is discounted 

and when using the positive-sequence model of the line. The fault location can be 

determined without assumptions using the following quadratic equation (3.15) [31]: 

0321

2  FRkkmkm          (3.15) 

Where; k1, k2 and k3 are complex functions of voltage current and source impedances. 

Equation (3.15) is separated into real and imaginary components in order to have two 

equations with two unknowns' m and RF and then the equation can be solved. 
 

3.3 Travelling Wave Based Method 

Traveling-wave theory has long been studied for the purpose of fault detection and 

location in transmission lines. The essential idea behind these methods is based on the 

correlation between the forward and backward traveling waves along the line. The 

principle of the fault-location techniques is based on the successive identification of the 

fault, initiated by traveling high-frequency voltage/current signal present where the 



www.manaraa.com

36 
 

locator is installed. In particular, the first and few subsequent signals are used to 

identify the fault position. The propagation time of the high-frequency components is 

also used to determine the fault position. Recent developments in transducer technology 

enabled high sampling rate recording of transient signals during faults. The availability 

of such broad bandwidth sampling capability facilitates better and efficient use of 

traveling- wave-based methods for fault analysis. Another significant development in 

parallel with the advances in the transducer technology is the newly introduced signal-

processing tools such as the discrete wavelet transform (DWT), which allows the 

analysis of sampled signals with localized transients. The attractive feature of wavelet 

transform in analyzing the traveling waves due to fault is the automatic adjustment of 

window width of the wavelets depending upon the duration of the transient under study. 

This is accomplished by time dilation of the chosen mother wavelet. As a result, 

accurate information on the arrival time of signals traveling at different speeds along the 

faulted line can be captured. This information is then used to calculate the distance to 

the fault point along the monitored line.   Fault-location methods using traveling waves 

are independent of the network configuration and devices installed in the network. 

These techniques are very accurate, but require high sampling rate and their 

implementation is more costly than implementation of impedance-based techniques [2].  

Nowadays, the currently used fault-location techniques for HVDC transmission lines 

are all based on traveling wave without exception. These traveling-wave-based methods 

have fast response and high accuracy, in which the time it takes for the traveling wave-

head to propagate from the fault point to the terminals implies the fault distance. The 

results they give are not easily affected by the factors, such as bus configuration, fault 

types, ground resistance, and system parameters. However, they are also facing some 

insurmountable technical problems as follows: 

1) The detection of the wave-head is the key to traveling-wave fault location. If the 

wave-head could not be captured successfully or the wave-head does not exist at all on 

the occurrence of a fault, the fault location will fail. For instance, when the line is 

grounded through a large resistance, the transient traveling -wave signals are too weak 

to be detected, disabling the fault location under these circumstances. Moreover, if a 

fault is caused by a gradual change in the transition resistance, the traveling wave may 

also be too weak to be discovered, resulting in the failure of fault location. 

2) In the method, the time is measured for the wave-head to arrive at the point where the 

device is installed, and the fault distance is the product of the time and the wave speed.  

Therefore, the accuracy of fault location is dependent, to a great extent, on the wave 

speed which, in turn, depends on the parameters of the line. 

3) Accuracy in fault location depends upon sampling frequency.  Since the speed at 

which the wave travels over transmission lines is slightly lower than light speed, in 

order to achieve higher accuracy, a very high sampling frequency has to be used in the 

traveling-wave fault-location methods. 

4) The wave-head must be identified in locating the fault, which is often carried out by 

experienced professionals and cannot be implemented automatically by computers. 

5) The travelling-wave fault location is vulnerable to interference signals. 

In a traveling-wave fault location, if the wave-head is not captured successfully or if it 

does not exist at all in some circumstances, the fault location cannot be implemented 

and all of the data that follow the traveling wave-head will be useless [19].  
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3.3.1 Travelling Wave Fault Location Theory 

When a fault occurs along a transmission line, the voltage and current transients will 

travel towards the line terminals. These transients will continue to bounce back and 

forth between the fault point and the two terminals for the faulted line until the post-

fault steady state is reached. Considering a single-phase lossless transmission line of 

length (l) connected between buses A and B with characteristic impedance Zc and 

traveling-wave velocity of v. If a fault occurs at a distance x from bus A, this will appear 

as an abrupt injection at the fault point. This injection will travel like a surge along the 

line in both directions between the fault point and two terminals until the post-fault 

steady state is reached. A lattice diagram illustrating the reflection and refraction of 

traveling waves initiated by the fault transients is shown in Figure (3.2). 

 

The voltage and current at any point x obey the differential equations (3.16) and (3.17): 
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where: L' and C' are the inductance and capacitance of the line per unit length. 

Resistance is assumed as to be negligible. The solutions of these equations are shown in 

equation (3.18) and (3.19): 
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Figure (3.2) Traveling voltage and current waves: lattice diagram for a fault at distance x from A [2] 
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Where: 
'

'

C

L
ZC   is the characteristic impedance of the transmission line and 

''

1

CL
v   is the velocity of propagation. 

Forward (ef )for voltage and similar for current(if) and reverse (er and ir) waves, as 

shown in Figure (3.2),  leave the disturbed area x traveling in different directions at v, 

which is a little less than the speed of light, toward the transmission-line ends. 

Transmission-line ends represent a discontinuity or impedance change where some of 

the wave’s energy will reflect back to the disturbance. The remaining energy will travel 

to other power-system elements or transmission lines. The lattice diagram in Figure 

(3.2) illustrates the multiple waves (represented by subscripts 2 and 3) generated at line 

ends.   Wave amplitudes are represented by reflection coefficients kA and kB, which are 

determined by characteristic impedance ratios at the discontinuities. τA and τB represent 

the travel time from the fault to the discontinuity. 

With the GPS technology, τA and τB can be determined very precisely. By knowing the 

length (l) of the line and the time of arrival difference (τA–τB), one can calculate the 

distance (x) to the fault from substation A by: 
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       (3.20) 

where: c – the wave propagation of 299.79 m/s. 

Construction of the lattice diagram becomes computationally difficult if the attenuation 

and distortion of the signals are taken into account as they travel along the line. On the 

other hand, time-frequency resolution of the transient signals can be used to determine 

the travel times of these transients between the fault point and the line terminals. In 

three-phase transmission lines, if losses are taken into account, there are three modes of 

propagation, therefore for the analysis of the traveling-wave effect, phase values must 

be converted into modal values [2].  

 

3.3.2 Travelling Wave Fault Location Data and Equipment Required 

The traveling-wave method relies on calculation of time for the line disturbance to reach 

the end of the line. Essentially, when a disturbance occurs, very accurate time tagging 

must be done. Since the wave moves approximately at the speed of light, by comparing 

the wave arrival time difference at each end, one can determine the distance to the 

source of the disturbance. This requires extremely accurate timing for calculation of 

fault location. Either voltage or current wave data can be used. The voltage portion of 

the traveling waveform tends to be reduced as the result of buses with lower impedance. 

On the other hand, the current waveform tends to double as the result of a constant 

current source. The first data requirement is a standard time reference at both receiving 

terminals. Then, some method of distinguishing which waveform must be used is 

required. The appropriate current waveform (or time tag in the voltage method) must be 

known to accurately calculate a fault location. From this point, a fault location can be 

calculated based on the precise wave-arrival times on each end of the line. The main 

piece of data that must be known is the very precise time that the traveling wave reaches 

each end of the line. At this point, it is merely a matter of calculation. 
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The following equipment is necessary to locate faults using the traveling-wave method: 

1. A very accurate time-stamping device (GPS) on both ends of the line. 

2. An appropriate sensor to detect the voltage or current, depending on the parameter 

used. In the case of the current wave, normal relaying accuracy CTs are used. The 

secondary CT circuits then have the current pulses detected by clamp-on inductive 

sensors. In the case of detecting voltage pulses, capacitive potential transformers are 

utilized. 

3.  A communication circuit is required to transmit the time-stamped data back to a 

central location. 

4.  A computer capable of retrieving the remote data, distinguishing the appropriate 

waveform for the fault-location calculation, and providing the appropriate 

calculations to the fault [2]. 

 

3.4 High Frequency Methods 

Contemporary methods for fault location on overhead lines and underground cables can 

be classified as two fundamental types: methods based on the measurement of post-fault 

line impedance and methods based on the measurement of the fault-generated traveling-

wave component. There has been considerable research effort into the development of 

impedance-based methods for fault location. However, like any other power frequency-

based measurement methods, they suffer from limitations due to fault-path resistance, 

line loading and source parameters, etc. As a result, the accuracy attained in fault 

location is rather limited. Theoretically, the pattern of the fault-generated traveling wave 

contains information about the fault location that can be used to accurately locate the 

fault. However, present traveling-wave-based fault-location methods exhibit 

shortcomings; a fault will not generate many traveling-wave components when it occurs 

at a voltage inception close to zero degree; for a close-up fault, the time difference 

between the arrival of an incident wave and the arrival of its reflection from the bus bar 

will be so short that the waves are unlikely to be detected separately.   This could make 

the interpretation of the information available in the first few milliseconds after the 

arrival of the first wave front virtually impossible. Where the measurement involves 

voltage signals, then the bandwidth limitation of the capacitive voltage transformer 

(CVT) can be a serious impediment [32]. An approach to transmission-line protection 

has been developed based on the detection of fault-generated high-frequency transient 

signals, and the research shows that the technique can be applied to achieve very high 

accuracy in fault location [33]. The method has been shown to be immune to power 

frequency phenomena such as power swings and CT saturation. Similar techniques have 

been developed [34], where traveling-wave phenomena were used for fault detection.   

The use of wavelet transforms to extract the high frequency transients was introduced.   

Two basic systems were described; one using recordings from both ends of the line and 

synchronized using global positioning satellite receivers, and the second using 

recordings made at one end of the line. The technique based on high-frequency 

components of currents and voltages generated by faults, which travel between the fault 

and the line terminals, is still also not widely used. This method is considered as 

expensive and complex, since use of specially tuned filters for measuring high-

frequency components is required [2].  
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3.4.1  Basic Principle and Fault-Locator Design 

A sudden change in system voltage on a power line or cable will generate a wideband 

signal, which covers the entire frequency range [32].  The initial values of these waves 

are dependent, among other factors, on the fault position on the line, the fault-path 

resistance and, the most important of all, the instance of fault occurrence. These 

different frequency components propagate away from the fault point in both directions. 

In time, these signals reach other discontinuities on the line/cable and are reflected back 

towards the fault point. In the frequency domain, the magnitude of the individual signal 

components decreases as the frequency rises and traveling speed increases. The 

principle of the fault-location method is based on the successive identification arrival of 

traveling high-frequency voltage signals at the bus-bar where the locator is installed. In 

particular, the timing of the first received and subsequent signals referenced to that first 

signal are used to identify the fault position [2].  

The voltages are monitored using high-voltage coupling capacitors.  The signals from 

these are then digitized for processing. Modal mixing transforms are used to extract the 

aerial-mode and ground-mode signals. This process provides inherent filtering. Digital 

band-pass filters then extract the high-frequency components used for the fault location. 

In practice, the accuracy of the technique is mostly affected by noise interference, which 

arises mainly from two sources: noise on the power line/cable, such as corona and 

partial discharge; and background noise coupled into the equipment. The prevalent anti-

noise techniques can be employed to reduce the effects of background noise. Moreover, 

the interference noise can be effectively reduced by controlling the gain of the input 

signals to maximize the accuracy of the fault location and reduce the effect of noise 

interference [2].  

 

3.5 Artificial Intelligence Methods 
 

Modern controls based on Artificial Neural Network, Fuzzy Logic and Genetic 

algorithm are found fast, reliable and can be used for protection against the line and 

converter faults and are gaining more interest in the field of HVDC transmission. 

Various artificial intelligence techniques that can be used for fault identification of 

HVDC transmission system are: 

3.5.1 Artificial Neural Network (ANN) 

ANNs have been extensively used for the fault diagnosis, load demand forecasting, 

system identification, state estimation etc., in power systems.   The increasing use 

of AI paradigms (i.e. based on ANNs, Fuzzy logic, Expert Systems etc.) in recent 

years in the area of HVDC systems is indicative of the promising features 

associated with these new techniques. As Artificial Neural Network (ANN) has 

capability to map complex and highly nonlinear input-output behavior, this 

approach is widely used to recognize patterns in electrical circuits, fault 

identification in an AC-DC system, HVDC controller design etc. Expert system 

based on neural network or Fuzzy system, is now applied for power system 

functions to overcome limitations of digital techniques. Distributed representation 

and strong learning capabilities are the major features of neural network. Recently, 

incomplete method is developed to detect faults in HVDC converter using the 

concept of signature analysis. Limitation of the existing method is examined and 

new ANN based methods are proposed to provide discrete and unambiguous 

indication of converter fault.  Proposed identifiers are very attractive for real time 
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Figure (3.3) Structure of the simple FNN [2] 

implementation because of their simple architecture. Comparison between different 

methods is also made. The ANN has advanced methods such as optimal control 

adaptive control, multi-variable control and different approaches such as 

microprocessor based controllers and digital signal processing have been 

investigated or under investigation. Artificial Neural Networks (ANN) are gaining 

widespread application in several areas of engineering, especially where, due to 

non-linearity of the process, it is often too cumbersome to analyze the process or 

the plant under study. The ANN has the capability to learn and extract information 

in systems where the non-linearity and time dependency do not permit one to use 

methods such as frequency or modal analysis. Although it is airways possible to 

liberalize a system around an operating point and conduct same studies, thus 

derived models always remain valid only within the limited region [35]. ANN will 

be discussed extensively in next chapter.  
 

3.5.2 Neuro Fuzzy 

Fusion of ANN and fuzzy-logic systems is a result of the tendency to use the better 

features of both techniques: capability of non-linear mapping, learning of ANN and 

high immunity to errors in input data and flexibility to their inaccuracy or uncertainty, 

which is a characteristic property of a fuzzy-logic.  Therefore, the neuro-fuzzy hybrid 

system combines the advantages of a fuzzy-logic system, which deals with explicit 

knowledge that can be explained and understood, and neural networks, which deal with 

implicit knowledge, which can be acquired by learning. This combination is referred to 

as a fuzzy neural network (FNN). There are several approaches to integrate ANN and 

fuzzy logic and very often it depends on the application.  One of the simplest structures 

of FNN is presented in Figure (3.3).  
 

 
 

In fact, that is a combination of feed-forward ANN driven by fuzzy inputs. In that 

structure the ANN represents a fuzzy-inference system: each node in the inference layer 

multiplies the input signals and the output of the node becomes the result of fuzzy 
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Figure (3.4) Detailed fault-location scheme based on FNN [2] 

inputs product (fuzzy intersection).   In a fuzzy inference layer fuzzy rules are fired and 

the value at the end of each rule represents the initial weight of the rule, and will be 

adjusted to its appropriate level at the end of training. For determination of a crisp 

output a defuzzification procedure is applied. Before that, in the output layer all 

particular outputs are summed with adequate weights (fuzzy union operation). Training 

of the network can be realized with a back-propagation method. For fault-location 

application the input signals represent normalized voltage and current waveforms 

obtained from simulation of different disturbances in the considered network Figure 

(3.3). They are divided into groups with respect to place of fault or any other 

disturbances. Fuzzification of input signals is performed by taking into account different 

signal characteristics, such as for example: value of DC component (in current signals 

fuzzy fication), signal spectrum (classified to one of a few categories) and so on. The 

adequate signal characteristics are calculated in the pre-processing stage. The phase-

coordinates or symmetrical-components approaches can be applied here. Designation of 

xi in the input signals is related to the fault place in the training data. Details are 

presented in Figure (3.4) FNNs are designed to an adequate type of fault. If the line 

needs to be considered as an untransposed one the FNNs should be precisely adjusted to 

a specific type of fault. Recently, the neuro-fuzzy approach is becoming one of the 

major areas of interest because it has the benefits of neural networks as well as of fuzzy-

logic systems and it removes the individual disadvantages by combining them on the 

common features [2].  
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3.5.3 Adaptive Neuro-Fuzzy Inference System (ANFIS) 

Fuzzy systems are generally used in cases when it is impossible or too difficult to define 

crisp rules that would describe the considered process or system, which is being 

controlled by a fuzzy control system. Thus, one of the advantages of fuzzy systems is 

that they allow describing fuzzy rules, which fit the description of real-world processes 

to a greater extent. Another advantage of fuzzy systems is their interpretability; it means 

that it is possible to explain why a particular value appeared at the output of a fuzzy 

system. In turn, some of the main disadvantages of fuzzy systems are that expert input 

or instructions are needed in order to define fuzzy rules, and that the process of tuning 

of the fuzzy system parameters (e.g., parameters of the membership functions) often 

requires a relatively long time, especially if there is a high number of fuzzy rules in the 

system. Both these disadvantages are related to the fact that it is not possible to train 

fuzzy systems. A diametrically opposite situation can be observed in the field of neural 

networks. User can train neural networks, but it is extremely difficult to use a priori 

knowledge about the considered system and it is almost impossible to explain the 

behavior of the neural system in a particular situation. In order to compensate the 

disadvantages of one system with the advantages of another system, several researchers 

tried to combine fuzzy systems with neural networks. A hybrid system named ANFIS 

(Adaptive- Network-Based Fuzzy Inference System or Adaptive Neuro-Fuzzy Inference 

System) has been proposed [10].   ANFIS is the fuzzy-logic based paradigm that grasps 

the learning abilities of ANN to enhance the intelligent system‟s performance using a 

priori knowledge. Using a given input/output data set, ANFIS constructs a Fuzzy 

Inference System (FIS) whose membership function parameters are tuned (adjusted) 

using either a back propagation algorithm alone, or in combination with a least squares 

type of method. This allows your fuzzy systems to learn from the data they are 

modeling. These techniques provide a method for the fuzzy modeling procedure to learn 

information about a data set, in order to compute the membership function parameters 

that best allow the associated fuzzy inference system to track the given input/output 

data. This learning method works similarly to that of neural networks. As the data in 

HVDC system are highly uncertain and the power disturbance monitoring is a pattern 

classification problem, therefore ANFIS based expert system is adopted for designing 

fault identifier. The existing method available for converter fault identification may give 

a very quick indication of the converter fault with the assumption that the overlap angle 

μ is limited up to 60 degrees. But the accuracy of the identifier totally relies on the 

proper selection of the delay time, i.e. the delay time exceeding the expected overlap 

angle μ may give false indication of fire through and false indication of commutation 

failure if the delay angle is not sufficient [35].  

 

3.5.4 Genetic Algorithms 

Genetic algorithms belong to the wide family of evolutionary computation methods.   

They are computational optimization algorithms that are inspired by Nature‟s 

evolutionary process. They primitively emulate (with great simplicity) the rules of 

natural selection, which favor the stronger species and force further evolution such that 

they remain alive in a given environment. GAs offer the attraction that all parts of the 

possible space are potentially available for consideration, so the global minimum should 

be attained if premature convergence can be avoided. The primary focus of such 

algorithms is the search for the global optimal state when for any reason the analytical 

methods cannot be used (e.g., for problems with multiple local optima, or even for 

problems where we do not know whether a single optimum is unique). Similarly as in 
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natural evolution, the process reproduced in GA delivers successive generations of 

individuals that are modified so as to approach an optimum form. Each descendant has 

different features from its parents, i.e., it is not a perfect but modified copy. If the new 

characteristics are favorable, the offspring is more likely to flourish and pass its 

characteristics to the next generation. However, an offspring with unfavorable 

characteristics is not reproduced, ending further development of the considered path. 

These concepts have been applied to mathematical optimization, where a population of 

candidate solutions develops toward an optimal point. Originating from the evolutionary 

inspiration, GA also uses biological terminology. The calculation procedure can be 

tracing by calling the natural process. Characteristics of a living organism (from the 

point of view of its fitness with respect to an environment) are determined by a set of 

chromosomes placed in each organism cell. The chromosomes are made up of genes, 

where each gene determines a particular attribute such as hair color. The complete set of 

genetic material is referred to as the genome, and a particular set of gene values 

constitutes a genotype. The resulting set of attributes is described as the phenotype [38].  

Each individual in the population of candidate solutions is graded according to its 

fitness. The higher the fitness of a candidate solution, the greater are its chances of 

reproducing and passing its characteristics to the next generation. This simplified 

procedure constitutes the basis for genetic algorithms. In the computer program the 

process characteristics are represented by numbers. The searching algorithm optimizes 

the fitness function inside the search space that is defined by the set of chromosomes 

made up by genes. For example, in a simple case the chromosome can be composed of 

two genes: α, β, each defined by three binary numbers: 

 [α β]= [α0 α1 α2 β0 β1 β2].  e.g.: [4 3] = [1 0 0 0 1 1] 
 

The possible values for the genes are called alleles, so there are 8 alleles for  each 

gene in this example. Each position along the chromosome is known as a locus; 

there are two decimal or six binary loci in the above example. It can be seen that 

the investigated problem involving many variables can be represented by the 

chromosome with as many as needed numbers of genes or with fewer numbers of 

genes and adequate numbers of loci in a single gene. For N binary numbers of loci 

there are 2N alleles in the chromosome. For each possible combination of genes in 

the search space there can be determined fitness function:  
 

),,,,,(),( 210210  ff 
 

 

Each individual in the population has his specific chromosome. On the basis of  this 

fitness function the selection process is performed: the fitter an individual, the more 

likely it is to be selected for further reproduction. The optimization process is 

performed iteratively by selection of the individuals with higher (less) fitness 

function belong to the consecutive created generations. The global optimization is 

assured thanks to two additional mechanisms performed in one after another 

generation (reproduction): cross-over and mutation. These operators define the 

method for creation of the next-generation individuals (candidate solution) by 

adequate modification of its chromosomes. Cross-over is the operation during 

which a new chromosome is created that typically shares many of the 

characteristics of its parents: mother and father.   Different approaches can be 

applied here. For example, for a six-loci chromosome the new solutions can be 

generated as follows (mi and fi stand for: mother and father, respectively): 

 



www.manaraa.com

45 
 

 
 

 
 543210

543210

543210

543210

ffmmmf

mmfffm

ffffff

mmmmmm
  

 
Mutation involves changing the values of one or more loci. The classic example of 

a mutation operator involves a probability that an arbitrary bit in a chromosome 

will be changed from its original state. A common method of implementing the 

mutation operator involves generating a random variable for each bit in a sequence.    

This random variable indicates whether or not a particular bit will be modified. In 

this way parents are selected for each child, and the process continues until a new 

population of candidate solutions of appropriate size is generated. The general  

scheme of the GA is presented in Figure (3.5). GA starts with a randomly generated 

population (a set of solutions) and then moves from one population to another. This 

process continues until the stopping criteria are met. At each iteration,  the new 

population is generated by applying various search operators.    

Common terminating conditions are: solution is found that satisfies minimum 

criteria or fixed number of generations reached. 

Genetic algorithms are a very effective way of quickly finding a reasonable solution 

to a complex problem. Moreover, the basic principle of the method is simple and 

clear. However, it is important to understand that the functioning of such an 

algorithm does not guarantee success because it has a stochastic nature and in  some 

applications, a genetic pool may be too far from the solution [2]. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure (3.5) Flow chart of basic GA [2] 
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CHAPTER 4 

ARTIFICIAL NEURAL NETWORKS 
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Figure (4.1): The style of neural computation [37] 

Working on artificial neural networks, commonly referred to "neural networks", has 

been motivated right from its inception by the recognition that the human brain 

computes in an entirely different way from the conventional digital computer .  The 

brain is a highly complex, nonlinear and parallel computer (information processing 

system). It has the capability to organize its structural constituents, known as 

neurons. So as to perform certain computations (e.g. pattern recognition, perception 

and motor control) many times faster than the fastest digital computer in existence 

today [36].  

In this chapter the intelligent copy of the brain, artificial neural networks (NN) will 

be studied.  An introduction of how NN works is discussed in section 4.1. The 

neuron will be defined and studied in section 4.2.  Section 4.3 explains activation 

function types and section 4.4 studies different structures of NN.  In section 4.5 

many types of NN learning strategies are introduced. Training and testing NN are 

discussed in section 4.6.  Finally, training functions will be studied in section 4.7.   

   

4.1 Introduction 

An ANN is an adaptive, most often nonlinear system that learns to perform a  

function (an input/output map) from data. Adaptive means that the system 

parameters are changed during operation, normally called the training phase. After 

the training phase the ANN parameters are fixed and the system is deployed to 

solve the problem at hand (the testing phase).  ANN is built with a systematic step-

by-step procedure to optimize a performance criterion or to follow some implicit 

internal constraint, which is commonly referred to as the learning rule. The 

input/output training data are fundamental in neural network technology, because 

they convey the necessary information to “discover” the optimal operating point.   

The nonlinear nature of the neural network processing elements (PEs) provides the 

system with lots of flexibility to achieve practically any desired input/output map.  

There is a style in neural computation that is worth describing in Figure (4.1). An 

input is presented to the network and a corresponding desired or target response set 

at the output (when this is the case the training is called supervised).  An error is 

composed from the difference between the desired response and the system output. 

This error information is fed back to the system and adjusts the system parameters 

in a systematic fashion (the learning rule). The process is repeated until the 

performance is acceptable. It is clear from this description that the performance 

hinges heavily on the data. If one does not have data that cover a significant  portion 

of the operating conditions or if they are noisy, then neural network technology is 

probably not the right solution.  
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On the other hand, if there is plenty of data and the problem is poorly understood to 

derive an approximate model, then neural network technology is a good choice.   

This operating procedure should be contrasted with the traditional engineering 

design, made of exhaustive subsystem specifications and intercommunication 

protocols. In ANNs, the designer chooses the network topology,  the performance 

function, the learning rule, and the criterion to stop the training phase, but the 

system automatically adjusts the parameters. So, it is difficult to bring a priori 

information into the design, and when the system does not work properly it is also 

hard to incrementally refine the solution. But ANN-based solutions are extremely 

efficient in terms of development time and resources, and in many difficult 

problems ANNs provide performance that is difficult to match with other 

technologies [37].  
 

4.2 NN Neuron 

A neuron is an information processing unit that is fundamental to the operation of a 

neural network. The block diagram of Figure (4.2) shows the model of a neuron, 

which forms the basis for designing neural networks. Here we identify three basic 

elements of the neural model: 

1. A set of synapses or connecting links, each of which is characterized by a weight 

or strength of its own. 

2. An adder for summing the input signals, weighted by the respective synapses of 

the neuron. 

3. An activation function for limiting the amplitude of the output of a neuron.  

 

 
 

 

 

The neural model of Figure (4.2) also includes an externally applied bias, denoted 

by bk. The bias bk has the effect of increasing or lowering the network input of the 

activation function, depending on whether it is positive or negative, respectively 

[36].  

In mathematical terms, we may describe a neuron k by writing the following pair of 

equations (4.1) and (4.2):  

Figure (4.2): Nonlinear model of a neuron [36] 
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where x1,x2,…xm are the input signals; wk1,wk2,…wkm are the synaptic weights of 

neuron k; uk is the linear combiner output due to the input signals; bk is the bias;   

is the activation function; and yk is the output signal of the neuron. The use of bias 

bk has the effect of applying an affine transformation to the output uk of the linear 

combiner in the model of Figure (4.2), as shown by equation (4.3) and (4.4): [36] 
 

                                (4.3) 

 

 

                                     (4.4) 

4.3 Activation Functions 

An activation function decides how powerful the output from the neuron should be, 

based on the sum of its inputs. Depending upon the application‟s requirements, the most 

appropriate activation function is chosen. The activation function  can be in different 

forms, a few of which are described below: 

 
1. Step function, equation (4.5): 
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2. Piecewise linear function equation 

(4.6): 
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3. Sigmoid unipolar function, equation 

(4.7): 
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4. Sigmoid bipolar function, equation 

(4.8):    

 

 (4.8) 

 

Figure (4.3) shows the above 

activation equations [6].  
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Figure (4.3): Different types of activation functions [6]  

1. Step function.   2. Piecewise linear function 

3. Sigmoid unipolar function 

4. Sigmoid bipolar function 
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Figure (4.4): General structure of feed-forward NN [6] 

4.4 NN Structure 

Based on the way the neurons are interconnected in a model, neural networks can be 

broadly classified into two types namely feed-forward and feedback networks. As the 

name suggests, feedback networks unlike feed-forward networks have a feedback 

connection fed back into the network along with the inputs. 

4.4.1 Feed-forward NN: 

Figure (4.4) shows the structure of a feed-forward multi-layer network with K0 input 

and KM output signals. Processing is realized in two final layers, so it is a two layer 

network. The intermediate layer is called hidden because their neurons have no 

connections with outside information. For simplicity, the polarizing signals frequently 

are not indicated in such schemes.   

 

 

Signal processing in the i
th

 network layer is performed according to the following 

relation (4.9): 
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Figure (4.5): Structure of recurrent NN [2] 
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It is assumed that all neurons of the i
th

 layer are the same. There may be more than one 

hidden layer. The result of the network processing is represented by the output vector in 

equation (4.10): 
T
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M
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)(        (4.10) 

At present, the majority of problems use feed-forward architecture. Such networks are 

widely used in prediction, filtering, information selection and decision making. 

Due to feed-forward simplicity and the existence of a well-defined learning algorithm 

[2], only feed-forward networks have been used in this thesis for the simulation.  

 

4.4.2 Recurrent NN 

Modification of a multi-layer perceptron that leads to feedback between the output and 

input of the network gives a recurrent network. Such networks may have a different 

structure depending on the depth and type of the connections between output (from the 

network output or any hidden layer) and input.  An example is presented in Figure (4.5). 

That is a so-called real-time recurrent network.  The processing layer is composed of the 

output and hidden neurons. Feedback is created by connection of neurons from the 

processing layer with input layer through the delaying lines. In the input layer there are 

input signals and feedback signals. Because of feedback such a network has its own 

dynamics: steady state is achieved after multiple input–output interactions.  Changing of 

any neuron influences the entire network. Therefore, such a structure is suitable for 

simulation of dynamic processes. Unfortunately, the negative side of the introduced 

feedback is the possible appearance of unstable regions in the network operation [2].  
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Figure (4.6): Scheme of supervised learning [2] 

4.5 NN Learning Strategies  

The basic problem in designing of ANN lies in determination of the weights in 

order to achieve the desired objective. This process is usually called learning or  

training. Generally, there are two strategies of ANN learning: supervised or 

unsupervised learning.  Supervised learning consists in modification of the network 

weights with the intention of minimization of the difference (error) between the 

presented input examples and the target output values. This strategy may be 

considered as some form of „teaching‟ in which the teacher has knowledge of the 

desirable input–output relations. The input signals are considered as a training 

vector and the desired response represents the optimum action to be performed by 

the network. The error signal is defined as the difference between the actual and 

desired network response [38, 8].  

In unsupervised learning there is no external teacher and there are no defined 

relations between inputs and output. The learning is performed on the basis of a  set 

of examples where only input conditions are known. In the learning process these 

examples are selected with respect to some similarity principle. Such a network 

may be considered as a self-organizing system that is learning on a competitive 

principle: the output neurons compete among themselves to be activated with the 

result that only one neuron is on at any time (a winner-takes-all competition rule). 

The learning strategy depends on an ANN structure. In the case of feed-forward 

multi-layer networks supervised learning is used [8]. Its structure is presented in 

Figure (4.6). 

 

 

For simplicity, the considered example is connected with a one-neuron network. 

The set of examples used in the learning process (with known input–output relations) 

are collected from measurements or are obtained from simulation.   In the last case it is 

assumed that the system model is known. Successive correction of the neuron weighting 

coefficients is performed according to the following rule in  equation (4.11): 

)()()1( nwnwnw jijiji        (4.11) 

Where: 

 wji(n) and wji(n+1) represent previous and corrected weights between the i
th

 and j
th

 

adjoining layers; while Δwji(n) is a correction value; n is the number of the iteration 

step. A stable learning process is assured by such choice of corrections Δwji (n) that the 

previous iteration calculations are convergent. 
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Consider the j
th

 neuron in a single-layer network. The learning process is based on 

minimizing errors between the actual output of the considered j
th

 neuron: yj (n) and the 

value requested by the teacher  dj(n) which can be represented by equation (4.12): 

)()()( nyndne jjj         (4.12) 

These errors are collected in vector e(n). We can see that the vector e(n) is a function of 

weighting coefficients vector w(n) at the input to the considered layer.  The correction 

value in equation (4.11) can be calculated as follows in equation (4.13): 

)()()( nxnenw ijJi       (4.13) 

Where:  

xi is the i
th

 input signal;  

η: is the learning rate parameter determining the speed of iteration process. 

The aim of learning is to obtain a minimum of error function equation (4.12). For a 

network composed of L neurons the error function can be defined as in equation (4.14): 

                                 



L

J

jj ydwS
1

2

2 )(
2

1
)(   (4.14) 

 
If the training set contains P learning pairs of (x(n),d(n)) with input vector x(n) and 

vector d(n) of desired outputs then for the n
th

 iteration step of learning the error function  

can be described as in equation (4.15): 
 

                  
 


P

n

jj

L

j

nyndnwS
1

2

1

2 ))()((
2

1
))((   (4.15) 

Minimization of equation (4.15) is a non-linear problem because of non-linear 

activation functions. Fortunately, there are known effective numerical algorithms for 

minimization of that function, which is based on the steepest-decent method.  They are 

an analytical base for the back-error-propagation learning strategy. The back-error-

propagation algorithm consists in calculation of correction values equation (4.13) as 

functions of errors estimated from minimization of equation (4.15). The process is 

performed layer by layer across the network in the reverse direction starting from the 

output layer. The structure of the algorithm is presented in Figure (4.6). Corrected 

weighting vectors are determined in blocks A
(M)

, A
(M–1)

,.., A
(1)

 and errors „propagated‟ 

to low layers are calculated in blocks B
(M–1)

, B
(M–2)

,.., B
(2)

. There are many kinds of 

different implementation of the back-error propagation algorithm. They differ in 

methods of determination of new weighting coefficients, which can be successfully 

upgraded when errors are passed back from layer to layer, or in parallel after finalizing a 

given iterative step. The grade of network „learning‟ can be evaluated by checking the 

value of corrections equation (4.13) in successive stages. The number of iterative steps 

(that is equivalent to the size of prepared learning set) needed to achieve satisfactory 

convergence depends on the network size, their structure, kind of investigated problem, 

details of used learning algorithm and so on. Sometimes, the learning set should have 

the size of many thousand cases [2].  

Correctness of the chosen ANN structure and learning process can be controlled by 

evaluation of the network outputs on some test excitation (with known answers). A 

testing set of input–output pairs is a part of all learning sets of cases, which, however, 
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Figure (4.7): Structure of back-error-propagation algorithm [2] 

was not used in the learning. Although the back-error propagation is the most frequently 

used method for training feed-forward ANN, it is neither the only nor necessarily the 

unique approach. First, the technique has no adaptive feature so all learning examples 

should be used every time the weighting coefficients are updated, even if a subset is not 

pertinent to the subject under consideration (the importance of some learning examples 

is not easy to determine). The method could not be easily adopted to optimize an ANN 

size and structure. Moreover, such an algorithm can be very slow in the vicinity of the 

final solution [39].  

 

 
 

 

4.6 Training and Testing NN 

The best training procedure is to compile a wide range of examples (for more complex 

problems, more examples are required), which exhibit all the different characteristics of 

the problem. To create a robust and reliable network, in some cases, some noise or other 

randomness is added to the training data to get the network familiarized with noise and 

natural variability in real data. Poor training data inevitably leads to an unreliable and 

unpredictable network. Usually, the network is trained for a prefixed number of epochs 

or when the output error decreases below a particular error threshold.   Special care is to 

be taken not to over train the network.  By overtraining, the network may become too 

adapted in learning the samples from the training set, and thus may be unable to 

accurately classify samples outside of the training set [40].  

4.6.1 Choosing the Number of Neurons 

The number of hidden neurons affects how well the network is able to separate the data. 

A large number of hidden neurons will ensure correct learning, and the network is able 

to correctly predict the data it has been trained on, but its performance on new data, its 

ability to generalize, is compromised. With few hidden neurons, the network may be 

unable to learn the relationships amongst the data and the error will fail to fall below an 

acceptable level. Thus, selection of the number of hidden neurons is a crucial decision. 
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4.6.2 Choosing the Initial Weights 

The learning algorithm uses a steepest descent technique, which rolls straight downhill 

in weight space until the first valley is reached. This makes the choice of initial starting 

point in the multidimensional weight space critical. However, there are no 

recommended rules for this selection except trying several different starting weight 

values to see if the network results are improved [40]. 

4.6.3 Choosing the Learning Rate 

Learning rate effectively controls the size of the step that is taken in multidimensional 

weight space when each weight is modified. If the selected learning rate is too large, 

then the local minimum may be overstepped constantly, resulting in oscillations and 

slow convergence to the lower error state. If the learning rate is too low, the number of 

iterations required may be too large, resulting in slow performance [40].  

4.7 Training Functions 

As an illustration of how the training works, consider the simplest biases in the 

direction in which the performance function decreases most rapidly, the negative of 

the gradient. An iteration of this algorithm can be written as: 

xk+1 = xk −αkgk    (4.16) 
where xk is a vector of current weights and biases, gk is the current gradient, and αk 

is the learning rate. This equation is iterated until the network converges. 

A list of the training algorithms which use gradient- or Jacobian-based methods is 

shown table (4.1) [41]. 

 

 

The fastest training function is generally trainlm, and it is the default  training 

function for feed-forward net. The quasi-Newton method, trainbfg, is also quite 

fast. Both of these methods tend to be less efficient for large networks (with 

thousands of weights), since they require more memory and more computation time 

for these cases. Also, trainlm performs better on function fitting (nonlinear 

regression) problems than on pattern recognition problems.  When training large 

Table (4.1): Training Algorithms and their MATLAB Functions 

No. 
MATLAB 

Function 
Algorithm 

1 trainlm Levenberg -Marquardt 

2 trainbr Bayesian Regularization 

3 trainbfg BFGS Quasi-Newton 

4 trainrp Resilient Backpropagation 

5 trainscg Scaled Conjugate Gradient 

6 traincgb Conjugate Gradient with Powell/Beale Restarts 

7 traincgf Fletcher-Powell Conjugate Gradient 

8 traincgp Polak-Ribiére Conjugate Gradient 

9 trainoss One Step Secant 

10 traingdx Variable Learning Rate Gradient Descent 

11 traingdm Gradient Descent with Momentum 

12 traingd Gradient Descent 
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networks, and when training pattern recognition networks, trainscg and trainrp are 

good choices. Their memory requirements are relatively small, and yet they are 

much faster than standard gradient descent algorithms [41]. 

It is very difficult to know which training algorithm will be the fastest for a given 

problem. It depends on many factors, including the complexity of the problem, the 

number of data points in the training set, the number of weights and biases in the 

network, the error goal, and whether the network is being used for pattern recognition 

(discriminant analysis) or function approximation (regression) [41]. 

In general, for networks that contain up to a few hundred weights, the Levenberg-

Marquardt algorithm will have the fastest convergence. This advantage is especially 

noticeable if very accurate training is required. In many cases, trainlm is able to obtain 

lower Mean Square Errors than any of the other algorithms. However, as the number of 

weights in the network increases, the advantage of trainlm decreases. In addition, 

trainlm performance is relatively poor on pattern recognition problems. The storage 

requirements of trainlm are larger than the other algorithms tested.  The trainrp function 

is the fastest algorithm on pattern recognition problems. However, it does not perform 

well on function approximation problems. Its performance also degrades as the error 

goal is reduced. The memory requirements for this algorithm are relatively small in 

comparison to the other algorithms considered. The conjugate gradient algorithms, in 

particular trainscg, seem to perform well over a wide variety of problems, particularly 

for networks with a large number of weights. The SCG algorithm is almost as fast as the 

LM algorithm on function approximation problems (faster for large networks) and is 

almost as fast as trainrp on pattern recognition problems. Its performance does not 

degrade as quickly as trainrp performance does when the error is reduced. The 

conjugate gradient algorithms have relatively modest memory requirements. The 

performance of trainbfg is similar to that of trainlm. It does not require as much storage 

as trainlm, but the computation required does increase geometrically with the size of the 

network because the equivalent of a matrix inverse must be computed at each iteration. 

The variable learning rate algorithm traingdx is usually much slower than the other 

methods, and has about the same storage requirements as trainrp, but it can still be 

useful for some problems. There are certain situations in which it is better to converge 

more slowly. For example, when using early stopping you can have inconsistent results 

if you use an algorithm that converges too quickly. You might overshoot the point at 

which the error on the validation set is minimized [41]. For more information about how 

the training functions work look to [42]. 
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CHAPTER 5 

MODEL SIMULATION 
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Figure (5.1): Three Gorges – Changzhou Single Line Diagram [43] 

This chapter includes all the thesis work and simulation. Conditions and properties 

of the chosen model for HVDC system are discussed in (5.1). Chosen model 

Components are described in (5.2). Model simulation outputs are presented in (5.3).  

Section (5.4) covers the used methodologies for simulation of NNs and then the 

testing and training of used NNs are analyzed in (5.5). Finally, section (5.6) 

summarizes the results of simulation.  
 

5.1 Building Model 

This thesis focuses on fault detecting, classifying and locating on overhead, bipolar 

HVDC TL. Therefore, studied power network has been chosen to meet the following 

conditions: 

1.  The network must exist in the world to make benefit of the result. 

2.  It has to be HVDC Network. 

3.  It has to be Overhead and bipolar transmission line. 

4. It has to be long enough to study fault location precisely 

Few numbers of TL satisfy the above conditions. By studying the existed networks 

around the world, the most compatible network was constructed in China, in 2003, to 

connect the land of Three Gorges with Changzhou (3GC). It is a 940-kilometre (580 mi) 

long, 3000 MW capacity and bipolar 12-pulse HVDC transmission line. The (3GC), 

±500-kV DC Transmission project is an integral part of the Three Gorges Hydroelectric 

Power Project. The DC transmission used to transmit the bulk power generated by this 

project to the Changzhou area in East China. The project interconnects the central 

power region of China to the eastern power region of China. The 3000 MW rated power 

will be transmitted to a distance of 940 km on one single bipolar DC line at ±500 kV. 

Figure (5.1) shows the single line diagram of 3GC [43]. 
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5.2 Three Gorges - Changzhou Main Components  
To construct any research model, its components and their specifications must be 

known. Three Gorges-Changzhou network consists of the following main components: 
 

5.2.1 Filters 

Switchable filter/capacitor banks on the converter station AC buses are used as 

compensation equipment. At Longquan there are eight switchable sub-banks with a total 

capacity of 1076 Mvar. Three of those are HP11/13 (140 Mvar), three HP24/36 (140 

Mvar) and remaining two as HP3 (118 Mvar). 

A total of 1860 Mvar is provided in Zhengping, divided into nine switchable sub-banks; 

four of which are pure shunt capacitors, each rated for 190 Mvar. The remaining five 

are HP12/24 filter sub-banks, each rated for 220 Mvar [43]. 

5.2.2 Valves 

Each converter is built up of twelve (air insulated, water-cooled) single valves arranged 

in six units. Each suspended unit consists of two single valves combined into one 

mechanical unit called a double valve. There are 90/84 thyristors per valve at 

Longquan/Zhengping respectively. The thyristors used are 5" (YST90) and are identical 

for the two stations [43]. 

5.2.3 Converter Transformers 

The converter transformers are of the single phase two-winding type with two wound 

legs. The nominal parameters of the Longquan transformers are 297.5 MVA, 525/210.4 

kV, 16% reactance. 

The nominal parameters of the Zhengping transformers are 283.7 MVA, 500/200.4 kV, 

16% reactance [43]. 

5.2.4 DC Smooth Reactors 

Oil insulated smoothing reactors with a reactance of 290/270 mH are used in each pole 

at Longquan/Zhengping respectively [43].  

 

 
 Figure (5.2): HVDC MATLAB model 
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The model specifications in table (5.1) were used to construct the Matlab model using 

SimPowerSystem toolbox, which is one of MATLAB program toolboxes. Figure (5.2) 

shows the HVDC Matlab model. This model was developed from Thyristor-Based 

HVDC Transmission System MATLAB example model [43,44].  

Table (5.1) Summarized Specifications of the Simulated Model 

Rectifier side 

AC Source Converter Transformers 
Smooth 

Reactors 

Ph-Ph 

voltage 

Internal 

resistance 

Internal 

Inductance 
Frequency Type Capacity Voltages Value 

210KV 0 Ω 98.03mH 50 Hz 
Single 

phase 

297.5 

MVA 

525/210.4 

KV 
290 mH 

Transmission Line 

Length Resistance Inductance Capacitance 

940 km 0.015 Ω/km .792 mH/km 14.4 µF/km 

Inverter Side 

AC Source Converter Transformers 
Smooth 

Reactors 

Ph-Ph 

voltage 

Internal 

resistance 

Internal 

Inductance 
Frequency Type Capacity Voltages Value 

200.4KV 0 Ω 28 mH 50 Hz 
Single 

phase 

283. 7 

MVA 

500/200.4 

KV 
270 mH 

 

 

5.3 Model Outputs 

Many outputs can be noticed from the studied Matlab model to distinguish between 

faulty and no-fault conditions; however, the focus was on the measurements of AC 

and DC voltages and currents at the rectifier side. The same measurements at the 

inverter side can also be used. The network will be simulated with a sampling time 

of 5×10
-5

 seconds for five types of faults each 5-km of the TL starting at the 15
th

 

km to 925
th

 km and will be simulated many times for no fault conditions. 

In each simulation, the needed measurements will be recorded to use them as input 

to the neural networks. To study a certain fault, the voltages and currents at the 

instant of fault does not give clear vision to make the neural network work 

properly. Therefore, a comparison between the post- and pre-fault measurements 

have to be employed. For the time being, there is no protection system can deal 

with faults in less than a duration of one cycle after fault occurrence. So, the 

measurements of voltages and 

currents after a duration of one 

cycle of fault occurrence are 

compared to their measurements 

before a duration of one cycle of 

the fault occurrence.  

Based on a sampling time of 

5×10
-5

 and a network frequency 

of 50 Hz each cycle is 

represented by 400 impulses. The 

network outputs are depicted in 

equation (5.1). 
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Where: 

x+400 represents the value of x at 400 impulses after the instant of fault occurrence.  

x-400 represents the value of x at 400 impulses before the instant of fault 

occurrence. 

400 impulses represent a complete cycle in 50 Hz frequency and 5×10
-5

 sampling 

time.  

Va: AC Voltage of phase a at the rectifier side 

Vb: AC Voltage of phase b at the rectifier side. 

Vc: AC Voltage of phase c at the rectifier side. 

Ia: AC Current of phase a at the rectifier side. 

Ib: AC Current of phase b at the rectifier side. 

Ic: AC Current of phase c at the rectifier side. 

Vdc1: DC voltage of positive line at the rectifier DC side. 

Vdc2: DC voltage of Negative line at the rectifier DC side. 

Idc1: DC Current of positive line. 

Idc2: DC Current of negative line. 
 

5.3.1 Model Outputs at Fault and No-Fault Conditions  

The first level in this work is to detect faults; this mission requires studying the 

differences between the data of faults and no faults. Table (5.2) shows different 

data of each type of faults at a distance of 340 and 600 km away from the rectifier 

side and data in no fault conditions. From table (5.2) each type of faults has a 

special data. The no fault case is the normal case which has data of approximately 

ones. Using the AC data only is not enough while there is no important change 

between AC data at each fault type. By studying DC data we can compare between 

each type of faults and detecting the fault. The using of AC and DC data is required 

in this work in fault location level, using all data will make the results stronger in 

all research levels. 

5.3.2 Fault Position Effect On The Model Outputs 

From table (5.2) the model output data of voltages and currents changes according 

to the fault position; this property can be used in neural network to determine the 

fault location. 

5.4 Simulator Levels 

This research has three levels of simulation; first, the research detect existence of 

fault. While the network works normally without any fault the simulator will stop. 

When the simulator detect fault the simulator moves to the second level.  

The second level means that a fault has occurred, the simulator starts to classify the 

type of that fault.  It can classifies five different fault types; positive line to ground 

(+ve/GND) fault, negative line to ground (-ve/GND) fault, positive line to negative 

line (+ve/-ve) fault, positive line open circuit (+ve O.C) fault and negative l ine 

open circuit (-ve O.C) fault.  

In the third level the simulator starts to determine the location of the fault related to 

the distance from the rectifier side. Each type has a special NN to determine its 

location. Figure (5.3) shows the simulation levels used in this thesis. 
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 Table (5.2): Comparison of model output for fault and no-fault conditions at distances of 

340- and 600- km away from the rectifier side  

Station 
Fault +ve/GND -ve/GND +ve /-ve +ve O.C -ve O.C No Fault 

Dist. 340 600 340 600 340 600 340 600 340 600 x x 
R

e
c
ti

fi
e
r 

S
ta

ti
o

n
 

*aV
 

2.14 1.65 2.03 1.55 0.45 0.90 1.90 1.92 1.82 1.81 1.02 1.02 

*bV
 

0.75 0.76 0.74 0.75 0.25 0.33 1.11 1.10 1.08 1.06 1.00 1.00 

*cV
 

0.45 0.57 0.45 0.57 0.21 0.21 0.94 0.92 0.91 0.90 1.00 1.00 

*aI
 

2.51 2.48 2.53 2.49 2.92 3.36 0.63 0.62 0.70 0.72 1.00 1.00 

*bI
 

-3.3 -2.4 -3.2 -2.36 -3.2 -3.3 0.53 0.57 0.54 0.55 0.99 0.99 

*cI
 

0.54 0.81 0.59 0.84 0.83 1.10 0.60 0.60 0.65 0.66 1.00 1.00 

*1dcV
 0.14 -0.1 0.70 0.74 0.07 -0.2 2.53 1.79 1.00 0.97 0.99 0.99 

*2dcV
 0.73 0.78 0.14 -0.09 0.07 -0.2 1.02 1.00 2.52 1.79 0.99 0.99 

*1dcI
 3.28 3.26 0.21 0.23 2.46 2.40 -0.02 0.01 1.29 1.32 1.00 1.00 

*2dcI
 0.12 0.14 3.28 3.26 2.46 2.40 1.19 1.21 -0.02 0.01 1.00 1.00 

In
v

e
r
te

r 
S

ta
ti

o
n

 

*aV
 

-0.6 -0.2 -0.6 -0.2 -1.0 -0.6 0.18 0.34 0.12 0.28 0.98 0.98 

*bV
 

0.97 0.98 0.97 0.98 0.95 0.97 0.99 1.00 0.97 0.99 1.00 1.00 

*cV
 

1.11 1.08 1.11 1.08 1.12 1.10 1.06 1.06 1.05 1.05 1.00 1.00 

*aI
 

0.06 0.09 0.08 0.11 0.00 0.00 0.42 0.45 0.53 0.53 1.00 1.00 

*bI
 

0.04 0.07 0.06 0.09 0.00 -0.0 0.56 0.56 0.58 0.59 0.99 0.99 

*cI
 

0.01 0.03 0.03 0.04 -0.0 -0.0 0.83 0.77 0.69 0.70 0.99 0.99 

*1dcV
 

0.00 -0.0 0.14 0.19 0.00 -0.0 0.01 -0.0 1.17 1.18 0.99 0.99 

*2dcV
 0.09 0.15 0.00 -0.0 0.00 -0.0 1.12 1.13 0.01 -0.0 0.99 0.99 

*1dcI
 -0.1 -0.5 0.86 0.82 -0.1 -0.5 0.16 -0.6 0.97 1.00 1.00 1.00 

*2dcI
 0.88 0.83 -0.1 -0.5 -0.1 -0.5 0.98 0.99 0.16 -0.6 1.00 1.00 

 

5.5 Neural Networks Application 

Neural network is the tool employed to detect, classify and locate the faults in this 

thesis. By taking the simulation outputs and feeding them as inputs of a neural 

network we can approach the promising results.  

Neural network structures have to be modified by changing number of layers, 

number of neurons, training functions, weights and biases to get the best 

performance and least mean square error. 

Each level in detection and classifying fault has a special structure of neural 

networks and each position locator of each fault type has its topology differs from 

another.  

The neural network must be trained using outputs of the model before using to 

achieve the needed performance. After the choosing of a neural network, different 

groups of model outputs are applied to the neural network to test its performance. 
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Figure (5.3): Simulation levels 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

5.5.1 Training of Fault Detection Neural Network 

To train neural network to detect the existence of the fault, measurements of 952 

different conditions for different types of faults at different locations, and some of 

no fault cases were used as inputs for the neural network. The output of the neural 

network states whether a fault exists or not: a value of '1' means a faulty condition 

while a value of '0' indicates an unfaulty condition. Many NN topologies have been 

trained to get the best performance; when the DC measurements at the rectifier 

station were used only in 4-4-8-1 NN topology, best validation MSE of 1×10
-11

 is 

 

No Fault Fault 

+ve/GND 

-ve/GND 

+ve/-ve 

+ve O.C 

-ve O.C 

Fault Detection Level 

Fault Classifying Level 

Fault Position 
Location Level 

+ve/GND 

fault 

position 

locator 

-ve/GND 

fault 

position 

locator 

+ve O.C 

fault 

position 

locator 

+ve/-ve 

fault 

position 

locator 

-ve O.C 

fault 

position 

locator 

Figure (5.4): Performance of DC input fault detection NN  
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achieved. This value is acceptable and gives good results. Figure (5.4) shows the 

NN topology with the fault detection performance with DC inputs .To increase 

accuracy, the number of inputs have been increased by including the AC voltage 

and current  measurements at the converter side. The 10 inputs represent all the 

measurement data studied in section 5.3 at rectifier station. Figure (5.5) shows the 

chosen 10-10-10-1 NN topology and its performance when employing the 

Conjugate Gradient with Beale Powell Restarts training function. With the chosen 

topology best validation MSE of 6.18×10
-13 

and gradient of 1.4 ×10
-11 

were 

achieved. 

 

 

 

 

  

  

 

 

 

 

 

 

 

 

  

 

Note that  

MATLAB program divides NN training data to three groups; training data; to train 

and found appropriate NN weights and biases , validation data; used to validate the 

trained NN, and Test data; used to test NN performance (represents by 70%, 15% 

and 15% of total data, respectively, by default). 

5.5.2 Testing of Fault Detection Neural Networks 

To test the chosen neural networks, data of 393 model outputs for conditions differ 

than the training conditions are used as input for the trained 4-4-8-1 NN. The 

maximum error value between NN output and the target values was 7.3×10
-7

 while 

by using ten input NN of 10-10-10-1 topology, the maximum error value between 

NN output and the target values was 6.7×10
-6

. Where the NN output is zero or one, 

NN output can be approximated to make NN get zero error in all tested cases. So, 

both NNs can be used to detect faults with an accurate result.  

5.5.3 Training of Fault Classifying Neural Network 

After detecting fault the next task of classifying that fault starts. Five types of 

Overhead Bipolar HVDC TL faults (in section 5.4) are studied, each has a special 

code represents it. Table (5.3) shows the fault types and their represented codes. 

Table (5.3): Fault types and their codes. 
 

Fault +ve/GND -ve/GND +ve /-ve +ve O.C -ve O.C 

Code 001 010 011 100 101 

Figure (5.5): Performance of ten input fault detection NN  



www.manaraa.com

65 
 

Figure (5.7): Performance of ten input fault classifying NN. 

Figure (5.6): Performance of DC input fault-classifying NN 

Each digit in the code represents an output of NN. The used NN will be with 4 

inputs and 3 outputs if we use only the DC measurements of model outputs at the 

rectifier station and will be with 10 inputs and 3 outputs if we use all model 

simulation outputs. If we use only DC outputs of the model at the rectifier station to 

classify faults, a NN of 4-10-20-10-3 is used to get best validation MSE of     

8.8×10
-12 

which is an acceptable result. Figure (5.6) shows the performance of 

classifying fault NN with inputs of DC measurements only. 

 

 

In the other hand and after too many attempts to increase accuracy, using ten inputs 

that represent all the measurements mentioned in section 5.3 at the rectifier station, 

the NN of 10-10-20-3 topology with Conjugate Gradient with Beale Powell Restarts 

training function gives the best validation MSE with a value of 1.62×10
-12 

. Figure 

(5.7) shows the 10-10-20-3 NN topology and its performance. 
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Figure (5.8): Regression plot of training positive to ground fault locator NN 

5.5.4 Testing of Fault Classifying Neural Network 

To be sure, that we construct a powerful NN, model outputs of 355 cases for 

different faults at locations differ from the locations used in training the NN were 

used to test the trained classifying NN of 4-10-20-10-3 topology The maximum 

error value was 2.8×10
-6

 between NN outputs and targets. While by using            

10-10-20-3 topology, the maximum error in digits value of NN simulation related to 

the target outputs was 7.2×10
-6

. All outputs of these NNs have values of zeros or 

ones. Therefore, by approximating these outputs to the nearest integer; NN get no 

errors in all tested cases.     

5.5.5 Training of Positive to Ground Fault locator Neural Network 

In case of positive to ground fault occurs another level starts. The target of this 

level is to determine the fault distance from the rectifier side. The model is 

simulated in this level each 3 km between the 15 km and the 925 km and the 

simulation outputs at the rectifier side and the inverter side are taken as inputs for a 

new NN to get the best performance. In fault locators, twenty different inputs 

represent the measurements mentioned in section 5.3 from both rectifier and 

inverter stations are used. The increasing in inputs is to improve NN performance. 

Figure (5.8) shows the used 20-50-10-5-1 NN topology to locate the +ve/GND fault 

location and its regression plot. This NN has best validation MSE of 6.7×10
-5

.
  
  

From regression plot, all the outputs (in circles) have values near their targets (the 

diagonal line), the simulation maximum errors occur in the first 100 km from the 

rectifier, the total outputs can be represented with the following equation (5.2):
 

Output≈Target+0.84 km    (5.2) 
 

 

 

Note that 

Regression plot is a MATLAB Figure that shows the relation between NN outputs 

and targets, where NN outputs are represented by circles. This Figure gives the 

ability to represent outputs by equation of targets. 
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Figure (5.9): Regression plot of testing positive to ground 

fault NN 

5.5.6 Testing of Positive to Ground Fault Locator Neural Network 

To test the chosen +ve/GND fault locator, measurements of 71 different locations 

of positive to ground fault are used.  Table (5.4) shows sample of these outputs and 

targets for different positions. The errors vary from 0.1 km to 36.8 km with an 

average of 7.34 km.  Figure (5.9) shows the regression plot of the relation between 

targets and outputs of the testing +ve/GND fault locator NN. 

 

  
 

From Figure (5.9), the outputs of NN testing data can be represented by the 

following equation (5.3): 

Output≈0.99×Target+4.4km   (5.3) 

Outputs in this Figure approaches their targets and worse case appears in range of 

100-150 km away from the rectifier station. These results are acceptable while the 

errors are very small related to the HVDC TL length. 
 

Table (5.4): Errors of testing +ve/GND fault locator NN  

Target 

output 

NN 

output 
Error 

Target 

output 

NN 

output 
Error 

Target 

output 

NN 

output 
Error 

28 31.6 3.6 314 327.9 13.9 665 669.7 4.7 

41 37.5 3.5 340 344.6 4.6 704 691.1 12.9 

67 66.3 0.7 379 371.1 8.9 743 746.4 3.4 

80 87 7 418 419.4 1.4 782 774.1 7.9 

106 142.8 36.8 457 459.4 2.4 821 821.1 0.1 

119 128.7 9.7 470 474.8 4.8 834 837.1 3.1 

145 148.6 3.6 509 514.1 5.1 886 868.8 17.2 

184 197.2 13.2 530 539.3 9.3 899 897.2 1.8 

223 228.9 5.9 587 586.5 0.5 912 910.1 1.9 

262 261.1 0.9 626 608.9 17.1 925 910.7 14.3 
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5.5.7 Training of Negative to Ground Fault Locator Neural Network 

As before in training positive to ground fault locator, the HVDC model simulation 

outputs for both rectifier and inverter sides of 304 different positions of negative to 

ground fault have been simulated with 20-50-10-5-1 NN – which is the best found 

NN- to find the fault location. Figure (5.10) shows the used NN and its performance 

and the relation between NN outputs and targets. From Figure (5.10), the NN 

outputs have values near the target values, the total outputs can be represented as in 

equation (5.4):         NN Output ≈ Target+1.2 km    (5.4) 

 

 

 

 

 

   

5.5.8 Testing of Negative to Ground Fault Locator Neural Network 

To test the previous NN in Figure (5.10), the measurements of 71 different 

locations of HVDC TL for –ve/GND faults have been tested with the NN. The NN 

outputs of these data were compared with the targets to test the NN. Table (5.5) 

shows a sample of the tested locations and the NN outputs and errors between them. 

The error is varying between 0.3- to 17.5- km with an average of 6.2 km. Figure 

(5.11) shows the relation between target and output data of the used NN in testing 

level. The outputs can be represented by equation (5.5): 

Output≈Target+2.9 km      (5.5) 

 

 

 

 

 

 

 

Figure (5.10): Regression plot of training negative to ground fault locator NN. 
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Figure (5.11): Regression plot of testing negative to ground 

fault locator NN 

 

 

 

 
 

 

5.5.9 Training of Positive to Negative Line Fault Locator Neural Network 

The third type of discussed faults is the positive to negative line fault. To create a 

NN that can understand the +ve/-ve fault behavior when the fault location changes, 

the HVDC TL model simulated with +ve/-ve fault hundred times to take the 

measurements at the rectifier and inverter sides and feed them as inputs of the NN. 

After many attempts, the NN of 20-40-5-3-1 topology and Levenberg-Marquardt 

training function was chosen to reach the +ve/-ve fault location. Figure (5.12) 

shows the chosen NN locator of +ve/-ve fault for HVDC TL model and 

performance regression plot. A MSE of 4.87×10
-5

 was reached in the NN training. 

Total outputs of the trained data can be represents by equation (5.6): 

 

Output≈Target+0.8 km      (5.6) 

Table (5.5):  Errors of testing -ve/GND fault locator NN  

Target 

output 

NN 

output 
Error 

Target 

output 

NN 

output 
Error 

Target 

output 

NN 

output 
Error 

28 35.3 7.3 314 307.2 6.8 665 661.6 3.4 

41 38.1 2.9 340 329.4 10.6 704 714.4 10.4 

67 62.3 4.7 379 380.8 1.8 743 737.6 5.4 

80 88.5 8.5 418 419.8 1.8 782 792 10 

106 110 4 457 461.2 4.2 821 827.2 6.2 

119 121 2 470 464.6 5.4 847 843.4 3.6 

145 142.8 2.2 509 517.4 8.4 860 850.2 9.8 

184 189.3 5.3 535 539.2 4.2 899 905.3 6.3 

223 205.5 17.5 587 579.7 7.3 912 906.3 5.7 

262 266.3 4.3 626 626.3 0.3 925 909.1 15.9 
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5.5.10 Testing of Positive to Negative Line Fault Locator Neural Network 

After choosing the NN, it have to be tested to be sure that it can work precisely. 

The measurements at the rectifier and the inverter for 71 different locations of the 

+ve/-ve fault differs from that used in the training level were used to test the chosen 

NN. Table (5.6) shows a sample of NN outputs and their assumed targets and errors 

between them. The errors vary from 0.3 km to 22.8 km with an average of 7 km 

error. Figure (5.13) shows the plot of the relation between the NN outputs and the 

assumed targets in testing level. The NN tested outputs can be represented by the 

following equation (5.7):  

Output≈Target+1.9 km      (5.7) 

 

 

 

 

 

 

 

 

 

 

 

 

   

Figure (5.12): Regression plot of training positive to negative line fault locator NN 

Figure (5.13): Regression plot of testing positive to negative line fault locator NN 
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Figure (.16): Positive line open circuit fault NN used to determine the fault position and  its regression plot. 

 

Figure (5.14): Regression plot of training  positive line open circuit fault locator NN.. 

Table (5.6): Errors of testing +ve/-ve fault locator NN 

Target 

output 

NN 

output 
Error 

Target 

output 

NN 

output 
Error 

Target 

output 

NN 

output 
Error 

28 28.6 0.6 314 317.7 3.7 665 675.2 10.2 

41 35.6 5.4 340 359.2 19.2 704 704.9 0.9 

67 66.7 0.3 379 371.4 7.6 743 747.8 4.8 

80 84.3 4.3 418 407.2 10.8 782 777.8 2.2 

106 91.9 14.1 457 468 11 821 809.2 11.8 

119 112.6 6.4 470 467.7 2.3 847 841.1 5.9 

145 167.8 22.8 509 521.5 12.5 860 859.5 0.5 

184 176.8 7.2 535 535.9 0.9 899 905.1 6.1 

223 224.3 1.3 587 579.2 7.8 912 910.7 1.3 

262 277.5 15.5 626 628 2 925 914.6 10.4 

 

5.5.11 Training of Positive Line Open Circuit Fault Locator NN 

Two types of open circuit faults can happen in bipolar HVDC TL, positive line 

open circuit fault and negative line open circuit fault. To create a NN that can 

determine the location of the positive line open circuit fault, many topologies of NN 

have been simulated. The NN topology of 20-20-5-3-1 was chosen to determine 

fault location of this type. Figure (5.14) shows the chosen NN performance and the 

relation between NN outputs and their assumed targets in each level of the NN 

training. A MSE of 1.43×10
-5

 was achieved and the NN outputs have values near 

their assumed targets. The chosen NN outputs can be represented by equation (5.8): 

 Output≈Target+0.9 km     (5.8)  
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Figure (5.15): Regression plot of testing positive line open 

circuit fault locator NN 

5.5.12 Testing of Positive Line Open Circuit Fault locator NN 

The chosen NN in previous section was tested with measurements of 71 different 

locations differ from that in training level to test the NN performance. Table (5.7) 

shows a sample of the tested locations and the NN output for each location with the 

errors between them and their assumed targets. The errors vary from 0.2 km to 21.4 

km with an average of 5 km error found at all tested cases. 

Figure (5.15) shows the relation between the tested NN outputs and their assumed 

targets. The following equation (5.9) represents the NN outputs related to their 

targets: 

Output≈Target+0.039 km     (5.9) 

 
 

 

 

 
Table (5.7): Errors of Testing +Ve O.C fault locator NN. 

 

Target 

output 

NN 

output 
Error 

Target 

output 

NN 

output 
Error 

Target 

output 

NN 

output 
Error 

28 28.2 0.2 314 335.4 21.4 665 664.6 0.4 

41 41.4 0.4 340 348 8 704 700.1 3.9 

67 64.5 2.5 379 377.9 1.1 743 742.1 0.9 

80 79 1 418 423 5 782 783.6 1.6 

106 91.1 14.9 457 454.9 2.1 821 817.9 3.1 

119 117 2 470 473.9 3.9 847 845.8 1.2 

145 142.3 2.7 509 507.8 1.2 860 855.9 4.1 

184 183.8 0.2 535 516.4 18.6 899 892.1 6.9 

223 233 10 587 582.9 4.1 912 906.6 5.4 

262 263.2 1.2 626 621 5 925 908.4 16.6 
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Figure (5.16): Regression plot of training negative line open circuit fault locator NN  

5.5.13 Training of Negative Line Open Circuit Fault Locator NN 

The last type of faults is the negative line open circuit fault. As in the previous NN 

locators, the rectifier and inverter measurements of 304 different -ve/OC fault 

locations chosen as NN inputs to train a NN that can approximate  the location of 

the –ve/OC fault from the rectifier side. A NN of 20-20-5-3-1 topology was chosen 

to achieve this task. Figure (5.16) shows the used NN and the relation between its 

outputs and their targets which is the best relation of all previous NNs. The NN 

outputs can be represented by equation (5.10) as follows: 

Output≈Target+0.059 km     (5.10) 

 

5.5.14 Testing of Negative Line Open Circuit Fault Locator NN 

Table (5.8) shows the chosen NN outputs for 30 different positions of negative line 

open circuit fault. From this table the errors vary from 0 to 16.6 km with an average 

of 1.8 km error.  This result is the best of all locators. The NN outputs can be 

represented by the following equation (5.11): 

Output≈Target+0.45 km   (5.11) 

 

Figure (5.17) shows the NN regression plot between the NN outputs and their 

targets where outputs adjacent to their targets except some errors in range of 500-

600 km away from the rectifier station. 
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Figure (5.17): Regression plot of testing negative line open circuit 

fault locator NN 

Table (5.8): Errors of Testing –Ve O.C fault locator NN  

Target 

output 

NN 

output 
Error 

Target 

output 

NN 

output 
Error 

Target 

output 

NN 

output 
Error 

28 25.5 2.5 314 315.2 1.2 665 663.2 1.8 

41 42.5 1.5 340 339.4 0.6 704 703.6 0.4 

67 67.8 0.8 379 377.3 1.7 743 743.5 0.5 

80 78.1 1.9 418 419.5 1.5 782 782.5 0.5 

106 102.6 3.4 457 456 1 821 822.3 1.3 

119 120.1 1.1 470 469.3 0.7 847 846.9 0.1 

145 145.8 0.8 509 525.6 16.6 860 862.3 2.3 

184 182.9 1.1 535 534.8 0.2 899 899.4 0.4 

223 222.1 0.9 587 587.5 0.5 912 913 1 

262 262 0 626 623 3 925 920.4 4.6 
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5.6 Simulation Summary 

The next table (5.9) summarizes the used NN's and their performances and the 

maximum tested error for each NN related to overall HVDC TL length. 

    

Table (5.9): Summary of the used NNs. 

NN Topology 
Training 

function 

Best training 

performance 

(MSE) 

Maximum 

testing 

error % 

Average 

testing 

error % 

Detection 

fault 

4-4-8-1 

Conjugate 

Gradient with 

Beale Powell 

Restarts 

1×10
-11

 ZERO ZERO 

10-10-10-1 

Conjugate 

Gradient with 

Beale Powell 

Restarts 

6.18×10
-13

 ZERO ZERO 

Classifying 

faults 

4-10-20-20-3 

Conjugate 

Gradient with 

Beale Powell 

Restarts 

8.8×10
-12

 ZERO ZERO 

10-10-20-3 

Conjugate 

Gradient with 

Beale Powell 

Restarts 

1.62×10
-12

 ZERO ZERO 

Determining location of: 

+Ve/GND 

fault 
20-50-10-5-1 

Conjugate 

Gradient with 

Beale Powell 

Restarts 

6.7×10
-5

 3.9% 0.78% 

-Ve/GND 

fault 
20-50-10-5-1 

Conjugate 

Gradient with 

Beale Powell 

Restarts 

3.27×10
-5

 1.86% 0.66% 

+Ve/-Ve 

fault 
20-40-5-3-1 

Levenberg-

Marquardt 
4.87×10

-5
 2.42% 0.74% 

+Ve O.C 

fault 
20-20-5-3-1 

Levenberg-

Marquardt 
1.43×10

-5
 2.27% 0.53% 

-Ve O.C 

fault 
20-20-5-3-1 

Levenberg-

Marquardt 
7.61×10

-7
 1.76% 0.19% 

 

From table (5.9) many points can be concluded: 

1. For the fault detection and classifying there is an ability to use only 4 inputs 

represent the DC measurements at the rectifier station with acceptable 

performance but by using ten inputs of AC and DC measurements at the rectifier 

station, the system becomes more accurate and faster to learn. 

2. By using four-layer NN topology, both the detecting and classifying levels can 

be achieved where for the determining fault location NN, the use of five layer 

NN topology gives more accurate results.   

3. In the fault detecting and classifying levels, only four or ten different inputs 

which represents measurements of DC alone or AC and DC voltages and currents 
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at the rectifier terminal were used to construct NNs. In determining fault 

location, twenty different inputs of AC and DC Voltages and currents at both 

inverter and rectifier ends are needed to get an accepted results. 

4. Two training functions were used to train the selected NNs: Conjugate Gradient 

with Beale Powell Restarts (traincgb) and Levenberg-Marquardt (trainlm) 

function. These two functions got the best results after too many simulations. 

5. The Mean Square Errors for all the used NNs are acceptable with values near to 

zero. 

6. From simulation; a maximum percentage error related to overall HVDC TL 

length of 3.9% in the worst case was got when uses the NN to determine the fault 

location of +Ve/GND fault locator. While, zero errors in testing both fault 

detection and classifying NNs were obtained. 

7. The maximum average testing error related to the TL overall length was 0.78% 

and this result is accepted. 

8. In this thesis both detecting and classifying HVDC TL faults are done accurately 

where determining the short part of HVDC TL where the fault occurred 

accurately were succeed. 
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CHAPTER 6 

CONCLUSIONS  
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A feed-forward back propagation neural networks have been constructed and 

trained for detecting and classifying most frequent types of faults and determine the 

location of that fault on HVDC transmission lines. The model employed in this 

research is a 940 km long, ±500 kV overhead bipolar HVDC line. The post-fault 

measurements of AC and DC voltages and currents at the inverter and rectifier sides 

of HVDC system related to their pre-fault measurements were used as inputs for the 

chosen NNs. A period of one cycle before and one cycle after fault occurrence is all 

the  needed time to get all the required measurements. These measurements are  

monitored normally in the sending and receiving stations and don‟t need special 

hardware to be measured. There is an ability to use only DC measurements of 

voltages and currents at the rectifier station as NN inputs to detect and classify 

faults by using  four layer, 4-4-8-1 topology, NN for detection and five layer, 4-10-

20-20-3, NN for classifying faults.  

By using DC and AC measurements at rectifier station the NN becomes more 

accurate and faster in learning. A four layer NN of 10-10-10-1 topology was used to 

detect the existence of fault with approximately no error when tested. Five types of 

HVDC TL faults were classified by using four layer network of 10-10-20-3 

topology with no error in all the research tested cases.     

Before determining the fault location, fault type must be known. Different NNs 

were constructed to determine the fault location related to the rectifier station for 

each fault type. The best results were by using five layer NN topologies for all 

locator NNs. The maximum average testing error related to the HVDC TL length 

was 0.74% and this results is accepted.     

The used technique is easy, reliable and gives results in accepted time. This method 

works on-line and don't need more than one cycle time after fault occurrence to take 

the needed data, where the practical switch-off relays need about 3-5 cycle times to 

switch off, which makes this method very fast to get the wanted results.  

As a possible extension to this work, it would be quite useful to analyze all the possible 

neural network architectures and to provide a comparative analysis on each of the 

architectures and their performance characteristics.  

The possible neural network architectures that can be analyzed apart from back 

propagation neural networks are radial basis neural network (RBF) and support vector 

machines (SVM) networks.  
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ABBREVIATIONS 

 
3GC Three Gorges with Changzhou 

+ve/GND Positive Line to Ground 

+ve/-ve Positive Line to Negative Line 

+ve O.C Positive Line Open Circuit 

-ve/GND Negative Line to Ground 

-ve O.C Negative Line Open Circuit 

AC Alternating Current 

AI Artificial Intelligence 

ANFIS Adaptive Neuro-Fuzzy Inference System 

ANN Artificial Alternate Current Neural Network 

CSCs Current Source Converters 

CT Current Transformer 

CVT Capacitive Voltage Transformer  

DC Direct Current 

DWT Discrete Wavelet Transform  

FIS Fuzzy Inference System 

FNN  Fuzzy Neural Network 

GA Genetic Algorithm 

GPS Global Position System 

HVDC High Voltage Direct Current  

IGBT Insulated-Gate Bipolar Transistor  

LCC Line Commutated Current  

MSE Mean Square Error 

PEs Processing Elements 

PWM Pulse-Width Modulation 

RBF Radial Basis Neural Network 

SVM Support Vector Machines` 

TL Transmission Line 

trainbfg BFGS Quasi-Newton Training Function 

trainbr Bayesian Regularization Training Function 

traincgb Conjugate Gradient with Powell/Beale Restarts Training Function 

traincgf Fletcher-Powell Conjugate Gradient Training Function 
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traincgp Polak-Ribiére Conjugate Gradient Training Function 

traingd Gradient Descent Training Function 

traingdm Gradient Descent with Momentum Training Function 

traingdx Variable Learning Rate Gradient Descent Training Function 

trainlm Levenberg –Marquardt Training Function 

trainoss One Step Secant Training Function 

trainrp Resilient Backpropagation Training Function 

trainscg Scaled Conjugate Gradient Training Function 

VHF  Very High Frequency 

VLF Very Low Frequency 

VSC Voltage Source Converter  

XPSs Expert System Techniques  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

81 
 

REFERENCES 

  
[1]    Power Transmission Line Fault Location Based on Current Travelling Waves , 

Abdelsalam Mohamed Elhaffar, Doctoral Dissertation, Helsinki University of 

Technology,2008. 

[2]    Fault Location on Power Networks, Murari Mohan Saha, Jan Izykowski, 

Eugeniusz Rosolowski, Springer, 2010. 

[3]    Hybrid Simulation of ±500 kV HVDC Power Transmission Project Based on 

Advanced Digital Power System Simulator, Lei Chen, Kan-Jun Zhang, Yong-Jun 

Xia, and Gang Hu, Journal of Electronic Science and Technology, vol.11, no. 1, 

March 2013. 

[4]    Zimmermann H-J, Zadeh LA, Gaines BR (1984) Fuzzy Sets and Decision 

Analysis. North-Holland, Amsterdam 

[5]    On line fault section estimation in power systems with radial basis function neural 

network, Electrical Power and Energy Systems 24 (2002) 321-328, ELSEVIER.   

[6]    Artificial Neural Network Based Fault Location for Transmission Lines, Suhaas 

Bhargava Ayyagari, 2011, University of Kentucky. 

[7]    Cichoki A, Unbehauen R, “Neural networks for optimization and signal 

processing”, John Wiley & Sons, Inc., 1993, New York. 

[8]    Neural Networks, A comprehensive foundation, S Haykin, Macmillan Collage 

Publishing Company, 1994, New York. 

[9]    Dalstein T, Kulicke B, “Neural network approach to fault classification for high 

speed protective relaying”, IEEE Transactions on Power Delivery, vol. 4, 1995, 

pp.1002 – 1009. 

[10]  A Novel Technique for The Location of Fault on a  HVDC Transmission Line , A. 

Swetha, P. Krishna Murthy, N. Sujatha and Y. Kiran, ARPN Journal of 

Engineering and Applied Sciences, VOL. 6, NO. 11, NOVEMBER 2011. 

[11]  Kezunovic M, Rikalo I, Sobajic DJ, “Real-time and Off-line Transmission Line 

Fault Classification Using Neural Networks”, Engineering Intelligent Systems, 

vol. 10, 1996, pp. 57-63. 

[12]  Artificial Neural Network Approach to Single-Ended Fault Locator for 

Transmission Lines, Zhihong Chen and Jean-Claud Maun, IEEE Transaction  on 

Power Systems, VOL. 15. NO. I, February 2000. 

[13]  Radial Basis Function Neural Networks for Fault Diagnosis in Controllable Series 

Compensated Transmission Lines, Y.H. Song(SM) A.T. Jolins(SM) Q.Y. Xuan, 

Electrotechnical Conference, 1996. MELECON '96., 8th Mediterranean. 

[14]  Fault Identification in an AC-DC transmission system using neural networks,  N. 

Kandil, V.K. Sood, Transactions on Power Systems, Vol. 7, No. 2, May 1992. 

[15]  HVDC systems fault diagnosis with neural networks, L.L La1, F.Ndeh-Che, 

Tejedo Chari, The European Power Electronics Association, 1993. 

[16] Application of a Radial Basis Function (RBF) Neural Network for Fault 

Diagnosis in a HVDC System, K. G. Narendra, V. K. Sood , IEEE Transactions 

on Power Systems, Vol. 13, No. 1, February 1998. 

[17]  Neural Network Based Fault Diagnosis in an HVDC System, H.Etemadi, 

V.K.Sood, K.Khorasni, R.V.Patel, International Conference on Electric Utility 

Deregulation and Restructuring and Power Technologies, April 2000. 

[18]  Analysis and Identification of HVDC System Faults Using Wavelet Modulus 

Maxima ,L. Shang, G. Herold; J. Jaeger, R. Krebs, A. Kumar , AC-DC Power 

Transmission, 28-30 Conference Publication No. 485 @ IEE 2001, November 

2001. 



www.manaraa.com

82 
 

[19]  A Novel Fault-Location Method for HVDC Transmission Lines, Jiale Suonan, 

Shuping Gao, Guobing Song, Zaibin Jiao, and Xiaoning Kang, IEEE Transaction  

on Power Delivery, vol. 25, no. 2, April 2010. 

[20]   Fault Location in Extra Long HVDC Transmission Lines using Continuous 

Wavelet Transform, Kasun Nanayakkara, A.D. Rajapakse, Randy Wachal, 

International Conference on Power SystemsTransients, June 2011. 

[21]   Identification of Faults in HVDC System using Wavelet Analysis, 

K.Satyanarayana , S. Hussain MD, B.Ramesh , International Journal of Electrical 

and Computer Engineering (IJECE),vol.2,no.2, pp.175-182,April 2012. 

[22] Classification of Fault Analysis of HVDC Systems using ANN, P. Sanjeevikumar, 

B. Paily, M.a Basu, M. Conlon, IEEE, 2014. 

[23] HVDC for Beginners and Beyonds, Carl Barker, ALSTOM Grid Worldwide 

magazine, 2010. 

[24] HVDC the Proven Technology for Power Exchange, Siemens Company - Energy   

Sector, 2011. 

[25] The ABCs of HVDC Transmission Technology, Michael Bahrman and Brian 

Johnson IEEE Power & Energy Magazine Vol. 5 No. 2, March/April 2007.  

[26] CIGRÉ session, PL Sorensen, B Franzén, JD Wheeler, RE Bonchang, CD Barker, 

RM Preedy, MH Baker, B4-207, 2004. 

[27] Design aspects of Korean mainland to Cheju island HVDC transmission, JL 

Haddock, FG Goodrich, Se Il Kim, Power Technology International, Sterling 

Publication Ltd p.125, 1993. 

[28] Technical and Economic Aspects of Tripole HVDC, L. 0. Barthold , Fellow, 

IEEE, International Conference on Power System Technology,2006. 

[29] Reactive Power Compensation and Harmonic Filters for HVDC Classic, Dipti 

Khare, ABB. 

[30] Fault Location Identification for a VSC-HVDC System with a Long Hybrid 

Transmission Medium, Hashim Abbas M. Al Hassan, Master Thesis, University of 

Pittsburgh, 2014. 

[31] IEEE Guide for Determining Fault Location on AC Transmission and Distribution 

Lines, IEEE Std C37.114-2004 , 2005. 

[32] Accurate fault location technique for distribution system using fault-generated 

high frequency transient voltage signals, Bo ZQ, Weller G, Redfern MA, IEE 

Proc – Gener Transm Distrib 1999. 

[33] A new non-unit protection scheme based on fault generated high frequency 

current travelling waves Bo ZQ, Johns AT, Aggarwal RK, Proc of Int. Conf. on 

Advance in Power System Control, Operation & Management, APSCOM-95, 

1995. 

[34] Fault location using wavelets, Magnago FH, Abur A, IEEE Trans on Power Deliv. 

, 1998 

[35] Fault Identification in HVDC using Artificial Intelligence – Recent Trends and 

Perspective, M Ramesh, Research Scholar, A. Jaya Laxmi, Member, IEEE, 2012. 

[36] Neural Networks a Comprehensive Foundation, 2
nd

 edition, Simon Haykin, 

Pearson Education, 1999.  

[37] Artificial Neural Networks, Principe, J.C., Ed. Richard, C. Dorf, CRC Press LLC, 

2000 

[38] Neural Networks for Optimization and Signal Processing, Cichocki A, Unbehauen 

R John Wiley & Sons, Inc., New York, 1993. 



www.manaraa.com

83 
 

[39] Design and evaluation of an adaptive distance protection scheme suitable for 

series compensated transmission feeders, Erezzaghi MEL, Crossley PA, Elferes , 

Proc of 8th Int. Conf. on Developments in Power System Protection,2004. 

[40] Handbook of Measuring System Design, Peter H. Sydenham and Richard Thorn , 

John Wiley & Sons Ltd, 2005 . 

[41] Neural Network Toolbox™, User‟s Guide, Mark Hudson Beale, Martin T. Hagan, 

Howard B. Demuth, MATLAB, 2012. 

[42] Neural Network Design, Hagan, M.T., H.B. Demuth, and M.H. Beale, Boston, 

1996. 

[43] Role Of Three Gorges-Ghangzhou HVDC in Enter Connecting Central and East 

China, Abhay Kumar, Yuan Qingyun , Shanghai Symposium, 2003.  

[44] Thyristor-Based HVDC Transmission System, Silvano Casoria, MATLAB  

MathWorks, 2007. 

 

 


